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AN INTRODUCTION TO ADAPTTV£ ARRAYS

BACKGROUND

Airborne early warning (AEW) radar systeins opérating over land in an electronic
countermeasures (ECM) environment are severely troubled by both jamiming and clutter
[1]. Ground clutter-can be very large, typically some 30 dB larger than-return.from
targets of interést; and because ‘of aircraft motion (plus antenna rotation, if present).its:
power. spectrum generally snreads throughout-target doppler regions of interest, partic-
ularly in low-PRF (pulse repetition frequency) systems. Clutter-cancellation techniques
[2] used in present AEW radar cannot overcome the ground-clutter problem, and a per-
formance improvement of more than one order of. magnitude is essential.

Adaptive array antenna systems arc being considered as a solution to the above seri-
ous problems becaiise they can respond to their environment, in real time, in both the
spatial domain and the time (doppler) domain to optimize the signal-to-noise ratio for
the system [3]. Jammer interference is sensed in the spatial domain, and array pattern
nulls are formed in the directions of the interference sources to attenuate their contribu-
tions to output noise. Platform motion is sensed in the doppler domain from the fre-
quency spreading of the clutter power, and the array shifts into appropriate separated
“phase centers” in the time domain to collapse the clutter spectral spread and permit
better cancellationn, The optimization achieved by an adaptive array may also result in
secondary benefits, including compensation for antenna pattern distortions caused by

" aircraft structure blockage and scattering effects; compensation for element excitation
errors, damaged elrments, and radome effects; the possibility of more arbitrary element
spacing and arrangement, as in conformal array-mounting designs; and very low sidelobes
for antennas on aircraft over large sectors of interest.

1. INTRODUCTION
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The term adaptive array has been applied to so many different types of processing i v
systems that it is well to define the class of systems to be discussed in this report. For ! ':’ffﬁ
the purposes of this report, an adaptive array is system consisting of an array antenna and AT
_a real-time adaptive receiver-processor which, given a beam-steering command, samples its § x|
current environment and automatically adjusts itself as a matched filter to optimize the °
ratio of signal to ncise (jamming, ciutter, or interference) for the indicated direction, ;

frequency, and time. Adjustment control is accomplished by sensing the corrélation be-

tween element signals, i.e., on the basis of the covariance matrix of the set of system
inputs.

TR

Adaptive arrays as applied to radar systems are a relativeiy new concept, but they
have roots in a number of different fields, including retrodirective and self-focusing RF

Note: Manuscript submitted February 22, 1974,




WILLIAM F. GABRIEL

antenna arrays [4], sidelobe cancellers [5], adaptive filters [6], acoustic or sopar arrays
[7,8], and seismic arrays {9,10].

The first real contribution in the RF-antenna field was the retrodirective array in-
vented by L.C. Van Atta in the 1950’s. A.aother major step was the development of
phase-lock loop theory and practice, which made possible self-steering arrays. Phase-lock
loops can be used to phase coherently add signals from different antenna elements in an
array. A further advance allowed the phase-lock loop scheme to produce retrodirectivity;
the conjugate phase front required for retrodirectivity is in the lower coherent sidebands.
In the early 1960's, a key development came in the forta of an IF sidelobe canceller cir-
cuit invented by Howells [11]. This type of circuit has been widely used and developed
into practical phase-conjugate adaptive filtering devices, Howells, Applebaum, and their
coworkers at Syracuse University Research Corporation have so greatly refined and gen-
eralized sidelobe canceller analysis and design [12] that it now constitutes one of the
most important contributions to adaptive array concepts.

On the basis of the sidelobe canceller experience, Applebaum [13,14] developed a
control-law theory (algorithm) for adaptive arrays which maximizes a generalized signal-
to-noise (S/N) ratio. He applied the theory in the form of analog adaptive element-
control loops. Because of its practical basis, the Applebaum control loop was selected
as the model for discussion in this report.

o e o eh K

Several other interesting adaptive-array algorithms and techniques are described in
the literature. Time did not permit their inclusion herein, but an extensive reference list
has been prepared for the interested reader.

[ O TS

This report is intended to be tutorial, and starts out in Sec. 2 by reviewing some
basic ideas, namely phase conjugacy, cross-correlation interferometers, and the-IF phase-
cancellation circuit. Section 3 is an analysis of a simple two-element array that has a
single adaptive loop of the Applebaum type. One can get an excellent perspective on
adaptive system performance by studying this single-luop behavior, since it is easy to
keep track of the various parameters.

et e -

The main section of the report is Sec. 4, which is an analysis of a K-element linear
array with K adaptive loops of the Applebaum type. An effort is made to interpret the
1nathematics in terms of beam-forming networks. In particular, a retrodirective-eigenvector-
beam concept is employed to aid in visualizing the transient behavior of the adaptive-
array output pattern.

- s ran

2, REVIEW OF SOME BASIC CONCEPTS
2.1 Phase Conjugacy

The adaptive array performs spatial filtering by sensing automatically the direction
of a source of interference and forming a retrodirective receive beam in that direction to
subtract from its normal (unadapted) pattern. The prir.ciple is illustrated in Fig. 1, where
“retrodirective beam” denotes the receive beam automatically formed in the direction of
a single source of interference. To achieve retrodirectivity [4,15], the phase of each ele-
ment of the array must be delayed (with respect *o a given reference element) by exactly
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Fig. 1—Retrodirective beam principle of op-
eration for adaptive array, with one interference
source

the same amount that the incoming wave was advanced. At any given frequency, time
delay may be represented by a phase shift, which may be ambiguous to within *2nn,
Thus, at any element the retrodirective phase must bear a conjugate relationship to the

phase of the received signal at that element when compared to a common reference
element.

It turns out that phase conjugacy can be obtained very easily by feeding a mixer
with a reference signal either equal to or higher in frequency than the received signal,
and then choosing the difference frequency as the output. To see this, let us briefly re-
view mixer operation for a typical hot-carrier mixer diode with two input signals, as

illustrated in Fig. 2. Define input signals E; and Eg as the real parts of corresponding
complex numbers E4 and E3, where

By = aef(@1*0)  ang  F, = pef(W2ttda) 2.1)
E{ = Re(E1) = acos (wyt +¢q) (2.2)
E; = Re(Eg) = b cos (wat + ). (2.3)

The instantaneous current-voltage relationship for a hot-carrier diode is

I = I(e™-1) (2.4)

where
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Fig. 2—Diode mixér reprecentation

I; = reverse saturation current (constant)
¢ =~ 38 (constant)
v = voitage acros§ diode junction.
Next, let
i v=y -V, ] (2.5)
where - - o

Vp = total dc voltage, including self-bias,

and
y-= ko(Ey + Ejp). (2.6)

Voltage y is the RF voltage across the diode junction, with factor ko dependent on the
particular mixer-circuit parameters, Equation (2.4) may be written as

Iy
= -- — o
I=-Ig + (,b) ey (2.7)
where Iy = Vo, By expanding e® in a power seiies, one obtains

I , o2k(By +Eg)®  oBRS(Ey +Eg)
1=—1,+(7§), 1 + akg(Ey + Eg) + - '°(21 2., °(; 2,1 @8

An inspection of the power-series terms reveals that total output. current I consists of a
dc component plus all of the harmonics nw;, mws, (nwy - Mws), and (nw; + Mmws).
We are interested only in the linear product of E, and Eg, and this product is contained
only in the squared term of the series, so from Eq. (2.8) we pick cut .
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- (Ey + Eg)? 5 1b° (Elz, + 2E Eq + E22>. (2.9)
If we neglect the multlplymg factor, the product of E1 and Eg in Eq. (2.9) may be
written as
2(B1Ez) = 2ab cos (61 + §1) cos (wat + dn) (2.10)
2(E1Ey} = ab cos [(wy + wo)t + @1 + ¢2] + abcos [(wy —wa)t + ¢1 — ¢2]  (2.11)
2(E1Ep) = Re (E1Ey) + Re (B1E}) (2.12)

where E} is the complex conjugate of B3 with-wg < wg.

Thus, the sum frequency- term corresponds to the simple vector product of E; and
Ey, wheéreas the difference frequency term results in a product with. the complex conjugate
of the input of lowest frequency. Note that the complex conjugate must apply to the

_ signal of lowect frequency to obtain the correct direction of vector rotation, i.e., a “posi-

tive” difference frequency. The amplitude of the product i proportional to the product
of the amplitudes of the two inputs but is also dependent on the mixer-diode parameters
and’ the mixer circuit, as indicated in Eq. (2.9). In the special case in which E; and Ey
are of the same carriér frequency, wy = wg, the difference frequency is zero (dc output)
and the complex conjugate may be applied to either signal.

2.2. Cross-Correlation Interferometer

The adaptive array derives the phase-conjugate element “weights” for forming a
tetrodirective receive beam by cross-correlating the received element signals with a re-
ceived reference signal. The reference signal may consist of the output of a separate
antenna or the output of the array in which the particular element is locdted. In either
case, the basic principle is.that of the cross-éorrelation interferometer. This is a basic

type of antenna, first used in the field of radic astronomy. It is shown in s1mple sche-
matic form in Flg 3 [16,17].

Signals from a single point source at angle 0 off boresight arrive at the two antennas
A and B with a path-length phase difference of u, where

u = 2%_12 sin @ (2.13)

with
D = distance between anténna phase centers
A = wavelength,
These RF signals are translated mto a convenient IF band by two mixers fed from a com-

mon local osgillator, 50 that the BF phases and amplitudes are preserved in the IF sighals.
If we denote the 1F signal froin antenna B as Ep, we can write the real part as
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-Fig. 3—Simple schematic of cross-correlation intetferometer antenna

e 8 3 A

- : ; Ey = b cos (wt +u), (2.14)

where b is the amplitude of the signal received at B, w is the IF angular frequency, and '
u is the phase advance at B in reference to A. The IF signal from the mixer of antenna A i
is amplified and then offset to a higher frequency by mixing it with a constant reference

offset frequency wp in a second mixer. (The advantages of inserting an offset frequency

are discussed later.) Thus, we may express the real part of signal £, as

oy
%

&,

»
£}
34

el
&

E1 = acos [(w+ wo)t + ¢o} , (2.15) 5

. :{:.;:,;’zi

where a is the amplitude of the signal received at A, (w + wy) is its shifted IF angular r 4
frequency, and ¢g is a phase constant of the reference offset. 9
]

The mixer technique shown in Fig. 3 is only one of several methods that have been f,
used for achieving a frequency offset. Other methods include the following: '7/
, 53

1. A Fox-type, 0°~-360° RF phase shifter may be continuously rotated [16]. ';'*”‘1

: 5

2. If antenna A is circularly polarized (as, for example, a cavity-backed spiral . .e;f,
gp;énﬁa), the.anteqna itself can be.rotated, as in the AN/ASQ-96 DF system. ' Zf
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3. Various electronic serrodyne techniques may be used, such as sawtooth-swept
travelling wave tubes, ‘“staircase-driven’ digital phase shifters, and upper-sideband ampli-
tude modulators.

The continuous phase-shift rate wot introduced l;y the offset frequency in any of the
above techniques results in continuous scanning of the multiiobe receive pattern of the
interferometer. Lobes scan through a given point-source position at the rate of (wg/7)
lobes per second.

If signals E1 and Eg are combined in the final mixer shown in Fig. 3 and the
difference-frequency output is chosen, then from the mixer description given in the
previous section the output will be the real part of the product of E; and the complex
conjugate of Eq:

- - b
Re [E;E}] = 5 cos (wot + ¢ - u) (2.16)

= -‘Z—b cos u cos (wot + $o) * %’ sin usin (wot + o).

This final mixer operation is a true cross-correlation of the signals received at an-
tennas A and B, with the output having a carrier frequency precisely equal to the refer-
ence offset frequency. The amplitude of the output is proportional to the product of
the signal amplitudes received at the two antennas. The phase of the output is equal to
phase difference u between the signals received at the two antennas, except for the arbi-
trary phase constant ¢g associated with the reference offset frequency. The constant ¢g
can be calibrated out in a standard phase detector, permitting measurement of phase dif-
ference angle u, as is done in some applications.

The cross-correlation mixer signal is then amplified in a high-gain amplifier of gain
G, with passband centered at offset frequency wg, and integrated in a narrowband,
high-Q filter to improve the output signal-to-noise ratio. In addition to reducing the
noise in the output by narrowing its bandwidth, the filter integrates or averages the cor-
relation mixer output signal. This averaging is denoted symbolically by an upper overall
bar:

t+7
f Re [E;E{] dt = Re (E,E}). (2.17)
t

The averaging is very important in adaptive array processing and is discussed in greater
detail in Jater sections. For the mcment, it does not change the output as represented by
Eq. (2.16) because we are dealing with simple sinusoidal signals in steady state.

Therefore, the cross-correlation interferometer receiver system shown in Fig. 3 results
in an output at some convenient reference offset frequency which is a constant complex
number, the amplitude of which is proportional to the product of the amplitudes of the
signals received at the two antennas, and the phase of which is equal to path-length phase
difference u. In addition, the phase of this complex number happens to be the conjugate
phase of antenna B with respect to antenna A, so that it constitutes the exact phase augle
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required for this two-element array to form a retrodirective lobe pointed toward thesignal
source.

It is not necessary to inject an offset frequency, since we could get the same output
result from a *‘zero-IF” correlation detector with dc output. However, the de detector
output must contend with all of the other dc voltage terms represented in Eqgs. (2.8) and
(2.9) and requires balariced mixer networks and differential dc amplifier balancing in
order to get rid of the unwanted voltages. This is generally very troublesome in low-level
dc detection and requires continual dc drift corrections. Another disadvantage associated
with low-level dc detection is the presence of 1/f noise (flicker noise).

e seR ey A B

2.3. IF Phase-Cancellation Mixer’

The next step is to add to the cross-correlation interferometer a phase-cancellation
mixer as shown in Fig. 4 (based on Ref. 11). The output of the averaging filter is dé-
noted as complex weight W and its steady-state value is gain G times the averaged cross-
correlator output from Eq. (2.16):

W = kG(E,E}) (2.18)

W = Re (W) = kab G cos (wgt + ¢g - u), (2.19)

. - i 3 “ A
FVia v N

where k is a.constant representing the correlation—mixer conversion factor. The constant
k can be further defined, from constants given in Eq. (2.9), as

Sa
LG AR Sty
a‘,\\k;( i
G IRA RS o

k= ——m— Ry, (2.20)

J‘V\A‘

PR

\r -..
BRI HE
6t v SEIE SR AT s
PRD A TN T )

i where Ry, represents the mixer circuit load resistance. The constant k has units of
i volts~1, such that k(ElEz) will have the expected units of volts.

Weight W and signal Eo are fed into the additional mixer, and the sun frequency
! output, denoted by

i
]
5

PIAIRA AR

= K(WE;) = k2G(E,E3)E,, (2.21)

o

. i
TN
PR TSI

is chosen so that the product of E and the averaged cross-correlator output is obtained.
In the case of simple sinusoids, as represented in Eq. (2.16), there is no envelope modula-
tion to average, and Eg can be directly multiplied into its own complex conjugate, thus
changing Eq. (2.21) into

,
AL N
LA SR

Es = k2GIE,I%E, (2.22)

or

E3 = Re(Eg) = k2b2Ga cos [{w + wo)t + do] . (2.23)
The net result is that the phase of the Eq signal is automatically cancelled, and the out-
put is precisely.in phase with offset signal E;. Also, it should be noted that the ampli-
tude of E3 is proportional to the receved element power.
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In the general case where 51 and Eg are broadband envelope-modulated signals, phase q,;

« is slightly different fcr each speetral line and weight W represents an average conjugate R
phase of Ey relative to £1. "Thus, the product of Ey with W would not result in complete {3‘;
phase cancellation across the band, and the output would be slightly different from Ej. '«’f

: 2
] e
2.4 Integrating Fiiter Considerations g 4
‘
Section 2.2 briefly discussed the steady-state output of the integrating filter, t at there

are other asnects to examine. For convenience, consider the single-tuned RLC filter cir-

cui* sbowy in Fig, 5. This can be analyzed via the usual Laplace-transform approach [18],
¢+ ting with the integrodifferential equation of the circuit,

W av 1 _ U
‘§+Cdt+fdet"R’ (2.24) 4
where v is an input step-function sinusoid, and
¢
9
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Fig. 6—Single-tuned RLC filter circuit for W
v=290 for t <0

b= ‘i’;—q sin (Wl +¢o ~u) for ¢ 3 0. (2.25)

The necessary manipulations are contained in Appendix A, where W is found to be
W = abG[e"%tA cos (ft + ) + Bsin (wot +0)] . (2.26)

The various guantities are defined in Appendix A. Equation (2.26) consists of the usual
transient term plus a steady-state term. Examination of the expressions for B and ¢ shows
that the steady-state term will not be identical to the input sinusoid unless the circuit
resonance is tuned exactly equal to wg, whereupon 8 = (¢g — u) and B = 1/2, Otherwise,
the filter circuit introduces a constant phase shift.

The transient term is a decaying sinusoid of frequency § nearly equal to wq, since
we assume a high-Q filter, and the exponential decay is governed by

W (2.27)

a= SRC

Al

where 7 is the circuit time constant or equivalent integration time,

In adaptive arrays it is desirable to be able to control the time constant, yet not
introduce extra phase shifts, which would interfere with proper operation of the phase-
cancellation mixer shown in Fig. 4. The RLC circuit relationships indicate that this may
be difficult, and in practice this has been found to be the case. Thus, tuned-carrier inte-
grating filters are not very desirable here. A compromise solution is to convert down
from offset frequency wg to dc baseband I and @ channels (in phase and quadrature) at
the output of the wg amplifier. The integrating filter can then be a simple RC type.
Such a compromise is shown in Fig. 6. It attempts to retain the “best of both worlds”;
i.e., it retains the offset frequency output from the cross-correlation mixer in order to
keep the offset detection advantages noted in Sec. 2.2, and after amplification it converts
to high-level dc¢ in order to take advantage of the simpler RC integrating filter circuits,
which avoid unwanted phase-shift problems and permit easy control of time constants.
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AAN
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E, - B}

- CORRELATION MIXER
Fig. 6—Technique for using simple RC integrator filters

The arrangement shown in Fig. 6 uses the I and @ bipolar video from the RC filters to

remodulate the offset reference signal and reestablish weight W at the offset frequency
wo prior to mixing with Egq.

For the rest of this report, it is assumed that the integrating filter is of the RC type,
as in Fig. 6, and our filter transient analysis therefore can be based on the simple RC cir-
cuit shown in Fig. 7. The differential equation will be

LA

av _ v
Frcl¥-2L (2.28)
or
To S+ W= v, (2.29)

where 79 = RC is the circuit time constant and v is an input step-function dc voltage;

v-=0 for t<0

v=uvy for t=>0. (2.30)
11
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4 -

Taking the Laplace transform of Eq. (2.29), we get

oSW(S) - 7,W(0) + W(S) = i’s‘—l (2.31)
or

W) . %Y
(S+ag)  S(S+ag)’

W) = i (2.32)

where ay = 1/1g, and W(0) is the inijtial value of voltage W at time t = 0. Taking the in-
verse Laplace transform results in

L4

W(0)e %! + yo(1 - e”%0%) (2.33)

or

W = [W(0) - vgle %0t + vy, (2.34)
Since we could do this separately for the I and Q filters, it is obvious that Eq. (2.34) can
be written in terms of the entire complex numbers W and 7y, so that

W = [W(0) - Tple %t + T . (2.35)

This gives us a simple transient equation for complex weigh: W representing the I and Q
components of the bipolar videc coming out of the integrating RC filters,

3. TWO-ELEMENT ARRAY WITH SINGLE ADAPTIVE LOOP

The first adaptive array configuration to be discussed consists of a simple two-element
array with a single Applebaum loop (Fig. 8). It is schematically similar to the single-loop
sidelobe canceller described in Refs. 11 and 19, except that a beam-steering signal is
added, as described in Ref. 13. The most significant difference between Fig. 8 and Fig. 4
is the addition of a summing junction in which WyE is added to W1 E;, with the sum
then becoming the output and being fed back to the correlation mixer. The arrangement
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~ sy,

is intended to result in a negative-feedback servo loop. For the sake of simplicity, Fig. 8

does not show the local oscillator, IF buffer amplifiers, and bandpass filters of an actual
system. These »» not essentiai to the analysis at this point.

RS RSR apeRy AR T TR
AR BTEER

i
Beam-steering signals Bf and B are intended to steer the receive beam in some de- ﬁ

sired azimuth direction 8y. For quiescent conditions wherein only receiver noise is pres- g

ent, adaptive weight Wy will settle to a steady-state value denoted by quiescent weight 3

' ; Wq. We want Wy and W1 to be precisely equal to the weight values needed to point the k
beam in direction 6p. Thus, define Wy and Wy as those desired valucs with unit ampli- y

tudes, such that ‘ ¢

: : ;

) Wy =e" and W, = W = 740 (8.1)
where k

" up = l’x‘-i- sin g . (3.2)
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The quantity ug is defined on the basis of a reference phase point midway between the
phace centers of the twe elements, which are spaced apart by distance d. Thece weights
result in quiescent beam pattern G, (0), such that

Gq(8) = %—[ i(u-uo) 4 e'j(“"“")] = cos (u - ug), (8.3)
where
n = md sinf ; (3.4)
K b

0 is the far-field angle variable,

Weight W; is injected directly by the beam-steering signal Bf, so
Bf = Wy = el%0, (3.5)
Beam-steering signal B, however, is related to Wy through constant bg, as
B} = boW, = bge o, (3.5)

This constant will be evaluated later. B} and B are injectrd at some reference oifset

wp, but the e/®ot carrier term is not included since it would be only an extra nonessential
quantity to be carried along. In fact, we assume in this discussion that all signals have
bandpass frequency spectra which are represented by their complex envelopes, and RF or
IF carrier modulated by that envelope will be assumed; i.e., it will not appear explicitly

in any of the equations to follow.

Define element signals £1 and Eg as consisting of quiescent receiver channel noise
voltages ny and ng plus a statistically independent noisy voltage J; arising from a single
external interference source located at angle 6;. It is assumed that the source of inter-
ference is narrowband unless otherwise stated and that the source is suddenly switched on
at time ¢ = 0 in a step-function manner. Thus,

El = ny . .
for ¢t < 0 (quiescent) (3.6)
Eg = ng
Ey = ny + Je ™
. for t>0 (3.7)
Ey = ny + Je'
where
_md .
uj = 3 sin ;. (3.8)
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3.1, Equations for Weights Wo and W2

Weight W is equal to the beam-steering signal Bé" for element No, 2, minus the out-
put Vg of the correlator:

Wo = B; - Va. (3.9)
The correlator consists of the mixer, amplifier, and filter. Its transient behavior may be
solved for on the basis of the simple RC filter approach used in Sec. 2.4, provided that

the input voltage can be represented as a suitable step  function over time. Now the out-
put from the correlation mixer,

xg = k2(W1E; + WoE3)EY, (3.10)
has very rapid rms fluctuations in accordance with the receiver channel passband. The
filter, howevgar,‘ integrates or averages these rapid rms fluctuations ih accordance with its
closed-loop characteristics. The important criterion for our purposes is to have this aver.
aged value X9 of the mixer voltage represent an input step function. Thus, assume that
¥o remains constant with respect to time except for the step-function change occurring at

time ¢ = 0, which implies that the averaged rms values of the element signals must obey
this step-function property in the analysis to follow:

x2

R2(W1E, + WgEz)Eé’t

k2Wy (E1E) + k2Ws|Epl?
= R2Wy(E,ED) + R2E5%(BE - Vy). (3.11)

Voltage V3 obeys the RC filter differential equation, Eq. (2.27), discussed in Sec. 2.4.
Under the above assumption regarding averaged values, this may be written as

v |
T —d—E-+ Vi = G%3. (3.12)

Substituting Eq, (3.11) into Eq. (3.12) and rearranging yields

v _ _ AT N
r0 W2 4 (1402615, 2)V, = k2GIE? By + AT | (3.13)
dt |Ez|®

For a step-function change in (E1E3) and |E;|, Eq. (3.13) yields for Vy the solution

Vo = [V2(0) - V(=) e + Vy(=), (3.14)
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N W, (ErE*
K2GIE,|? | BY + —15:12—2—
Ey| )
Va(o0) = — (3.15)
1 + k2G|Ey]
and
+ B2G[E, |
o = LT REGIES]” (3.16)

To

The quantity V(0) is the initial value of voltage Vy at time ¢ = 0, and V(o) is the
steady-state value after the transient has died out. This solution for Vs is substituted

into Eq. (3.9) to get weight Ws.

The quantity Wog is defined as the optimum value of weight Wa; it is that value
which minimizes the output noise power of the array. The output noise power is the
sum of the quiescent receiver noise plus the external interference noise, weighted by
array weights Wy and Wy. If Y, is the array output noise voltage, the expression te be
minimized is the mean square of Y,, or

|¥al? = [(WyEq) + (WaE2)”. (3.17)
We sec by inspection that the optimum value of Wy needed to minimize Eq. (3.17) is

) (W,E,)E} _ Wy (E{E)

(3.18)
|Eg|? iEgI?

Woz =

Incorporating the assumptions regarding averaged values for the element signals results in

Wy (E{E%)
0y = - AL (3.19)
|Ea]
Recalling the discussion in Sec. 2.2, we note that Wpg is the normalized retrodirective
weight which will place a perfect spatial pattern null in the direction of an external
source of interference,

Returning to Eq. (3.15), we note that the relationship for Woa is contained therein,
so that the steady-state output of the correlator may be rewritten as

k2G|E5] (B - Woz)

8 (3.20)
1 + k2G|Ey|?

V(o) =
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2 \ 3.2. Servo-loop Considerations .

&’\ ?\'i .

-51:3 £ The adaptive loop in Fig. 8 exhibits behavior similar to that of a Type 0 follower
7 servo [20], a simple example of which is shown in Fig. 9a. This uni._ feedback circuit

is inherently stable and could represent, for example, a cathode follower or an emitter

S S LI S

5 follower. If the same approach is used as in Sec. 2.4, the equation for the circint may b
¥ be written 2 5
v dug § i
¥ To 3 * Vo = M€ = w(vi- vo) : e
1

or

R

L
2%

K

S,
i,
£

dv .
To EEO' + 1+p)yy = my;. (3.21)

3,

For a v; input step function, the solution for vy will be found to be

e o Wit
o e SR et A S 2T LSRRI

i \| e . B0 Py
vo = |vo(0) - I+ g e + T+a (3.22) ‘é %
4 L
4 =y
where : i
1 + B 3 B
Q= ——— ;

To (3.23)

S

If the above equations are compared with Egs. (3.,13), (3.14), (3.16), and (3.26), it is
; obvious that there are direct correspondences between

Toan
.;i’-;%’sa-

vo and Vp, .. ]

o )

p and k2G|Ey|%,

ES—

g

rs
N

e

and

5

v; and (B - Wog).

iy

Lon D, et
RS s

Based on this correspondence, the adaptive loop of Fig. 8 can be modeled by the

equivalent servo loop shown in Fig. 9b, whereupon the equations associated with weight
Wa simplify to the following set:

TRIERSRE LN SR P AN e

ACEATERG

Wp =B -V . (3.24)

>
1t

[Va2(0) - Va(eo)l ™! + V(o) (3.25)

B
= {55 (B2~ Woz) (3.26)

1+u
7o (3.27)
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(a) Type 0 follower servo
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Fig. 9—Servo locp schematic diagrama
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¥

Woz = (3.28)

7

1oE

= e e AN A 8 s
N

u

AP
MY

k2G| By, (3.29)

2

G
S aR

This equivalent servo concept is very interesting because it uses the optimum weight as its
input signal, and the degree to which the output approaches optimum then depends on
servo gain factor u. Note that for p >> 1, the steady-state value of Wy. is equal to Wpa.

It is also important to note that the equivalent servo gain factor, as defined in Eq. (3.29), i
is proportional to the average power level from element No. 2. Two consequences of this
peculiar power-sensitive gain behavior are that it is necessary to-establish a minimum value
for u, based on quiescent receiver noise power, and a maximum value, based on the maxi-
mum interference power to be received at the elements.
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By choosing an appropriate value for amplification gain.G, we can set the value of g as
desired. For example, a-convenient choice might be unity. Therefore, the gain will be
defined, on the basis of Eq. (3.30), as

Mo .
k2|72

(3.31)

The quantity k2|’ﬁ2|2 represents the voltage coming out of the correlation mixer due
to ng alone, and sirice it is proportional to power rather than voltage, it is important to
use enough preamplification to ensure its dominance over the thermal noise voltage gen-
erated at.that mixer. This is not an insignificant problem, as can be see.. by examining
the two magnitudes. The available thermal noise power at the mixer will be KTyB,,
where .

K = 1.38X10"28 J/K (Boltzmann’s constant),
Tp = equivalent noise temperature (K), . 3
and
By = bandwidth of the RC integrating filter.

If we choose typical values of 725K for Ty and 25 cycles for By, then the available ther-
mal noise voltage at the mixer is

tier for each element. The preamplifiers set the level of na, which in turn determines the
servoamplifier gain G from Eq. (3.31).

19

o

TN
Py P
et 3

22 3

i3

VETyBy = 5% 10710 volts. (3.32) ?}
By comparison, the quiescent receiver noise power referred to the elements would be ?;}:
] KTyB,, where B, is the element signal channel bandwidth. Choosing 5 Mc as a typical 7;{?,
i3 value for B,, wé have ;,:é
<:, 3 . ':‘.}‘“
i VEKToB; = V/5X 1077 volts, (3:33) ] %
and ng represents this voltage after preamplification by some gain A, or 24
4 ",ll .\

Sy & ]
: ng = AVEToB: = A5 X107 volts. (3.34) ”‘,Z
) ?’! Thus, the correlation mixer voltage due to ng alone will be 1 é
4 . E N . & ‘s’.;i:i
g Bk
k2(W,E,ES) = k2Wolfigl® = k2W A2 5X 10714 volts. (3.35) 3 %g
_ . . : ig
{ ‘Since the amplitude of Wy is unity, the magnitude of Eq. (3.35) is essentially (k2|ﬁ2|‘2). 3 5%
2 Furthermore, the mixer conversion factor k, given in Eq, (2.20), is unlikely to exceed ; —fﬂ
unity by an appreciable amount. Therefore, a considerable preamplification gain A is f ‘}3 :
necessary to ensure the dominance of k2|fi5|2 over the mixer thermal noise level as repre- ; ﬁf

sented in.Eq, (3.32). A preamplification gain on the order of 60 dB is indicated here. ! 3%

Figure 8 shows this necessary preamplification in the schematic form of a single preampli- 5 Ee

e
v,
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- The level-of Guiéscent fioise ny also*determines the magnitude of 'Beam;éteering‘s_i’gnal
B3, as inay:be’seen by-taking the steady-state-expression for wéight Wy, given by Eqs:
(3.24) and (3.26): : A . .

, . |
Wae) = Bf = {5 B2~ Woa). (3.36)

In the quieSpent condition, E; = n; and Eg = ng. These independent noise voltages
have zerd average ‘cross-correlation; i.e., .

:(n\;—r‘zﬁ)' =0, : . _(3§37-)

or Wy is zero. Also, thé quiéscent value of u is g, so that the quiescent expression for

" Wa(°3) becomes :

: _ B} by
quiescent Wp(c) = 3~ so 1 +m

W, . ' (3.38)

The quiescent \;alue,of Wa(e°) is equal by definition to quiescent weight Wy defined in
Eq. (8.1), or

|
/\
[
+i O
[ -]
=
o
e’
=

Wy = (3.39)

Therefore
by

1+ n. (3.40)

The amplitude of by is greater than the magnitude of the an:plified quiescent voltage

coming out of the correlation mixer. Note that the phase of the quiescent correlation
voltage output is precisely the same as that of the beam-steering signal, since we have,
from Eqs. (3.37) and (3.38), -

Xgo = k2(WyEq + WoE9)ES = £%(Wyny + Wang)nd = k2W, gl

or

quiescent fqg = 'kzlh’glze“j Yo, (5:41)

Then;-using the value-for gain G from Eq. (3.31), we have, for-quiescent Vs,

. Va2 = GXp = ppe o, ‘ (3.42)

“and we can .c:lqublecheck the guiescent weight

»

Wy = BE-Vgo = [(1 + pg)e 4o — uoe'j“°] = ¢ U0, (3.43)
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Next, consider the effect on u of a steadily increasing interference power level at the
eléments, in order to establish a maximum gain condition, From Egs. (3.27) and (3.29)
we see that as the power increases, the response/integration time decreases and produces

less and less averaging effect until the conditions assumed for the simple transient solu-
tion of Eq. (3.13) are no longer valid.

Both u and Wy then tend to follow the fast fluctuations in the envelopes of the ele-
ment signals, causing weight Wy to become “noisy.” Reference 21 presents the theory
for control-loop noise and derives expressions for the variance of the array element weights
and tor the additional noise in the array output due to this element weight fluctuation.

The upper-bound condition for avoiding “noisy loops’’ is most conveniently stated
in terms of -bandwidth; i.e.. the closed-loop, two-sided bandwidth should not exceed ap-
proximacsly one-tenth the bandwidth of the element signal channels [19]. This ensures

" enough integration time to average out rapid fluctuations in ¢ and to permit Wy to be
reasonably independent in a statistical sense from the instantaneous fluctuations of the
signal envelopes. or the simple circuit of Figs. 9a and b, the closed-loop bandiidth is

@, as is easily seen by assuming that v; and vg are sinusoids, v-hereupon Eg. (3.21) can be ‘
written as

jwrovg + v = p(vi— vo)

1
. bk ,. 3
Vo = —'—‘—"“—"“1 + 1 e jwro (0.44)

The half-power or 3:dB bandwidth point occurs for the condition

w3Tg £ (1+p) or w3z = o. (3.45)

Thus, if the element signal channel bandwidth is B, then the upper-bcund condition may
be expressed as

10 (3.46)

or

AT LI

WBcTO
Fm = 10 -1,

(3.47)

™

where up, is the up;:)er bound or maximum value-permitted for the gain factor.

MNP ReTs

It is convenient to express p in terms of pp and a power ratio, and this can he done
by noting that when an interference source is present, |E2| will be the sum of the squares
of the magnitudes of ng and the .interference source voltage J; at the mixers, so that

|Egl? = [gf? + 132,

F ST AL LR P Y
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B K2GiEgR gl + 2 _ W
Bo ~ k2Gns2 figl? |nz|2

(3.48)

The ratio of the squares of the voltage magnitudes is equal to the ratio.of interfer-
ence power to receiver noise power. If this power ratio is denoted by P;, then,-from
Eq. (3.48), u can be expressed in the form

= up(1 +Py), (3.49)
where the gain factor is essentially normalized to the quiescent receiver noise-power level.
One can proceed to calibrate servo-loop response according to the practical ratio of inter-

ference power to receiver noise power. Substituting-Eq. (3.49) into Eq. (3.47) resuits in

nB.Tq
Mm = Ho(l+Pim) = —35— = 1

or

10 = -— (1 + po + #oFim) . (3.50)

This simple expression relates basic filter time constant 79 to the maximum interference
pcwer to be handled, since channel bandwidth B, is generally fixed by the radar-pulse
waveform characteristics and cannot readily be changed. For example, choose a maximum
interference power condition 40 dB above receiver noise level, and a channel bandwidth of
5 Mc. Then from Eq. (3.50) we get, for pg = 1,

To = M 2+ 104)

or
70 = 0.00637 s

The corresponding filter bandwidth is (1/2n7g), or about 25 cycles.

The relationship between servo-loop gain and bandwidth is best illustrated by making
a Bode plot [20] as shown in Fig. 10, where the servo-ioop gain is plotted as a function
of frequency. Loop gain is obtained by cutiing the loop at a convenient point, in this
case the feedback path, whereupon we get

jwroug + vg = pe
or

{3.51)

!
loop gain = l '— T +1wro|

The breakpoint for the 20-dB-per-decade slope line occurs at w = 1/7g, the basic RC filter
bandwidth point, and the intersection of the slope line with the unity gain axis occurs ap-
proximately at w = /7. The slope-line intersection is a very uceful indication of the

22
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Fig. 10—Bode plot illustrating adaptive loop bandwidth
variation with power level

overall 3-dB bandwidth of the servo, which can be verified by referring to Eq. (3.45).
Figure 10 shows the Bode plot for interference power ratios of 10 dB, 30 dB, and 40 dB

above receiver noise level and is obtained by substituting Eq. (3.49) into Eq. (8.51) to
votain

Ho(1 + Py)

loop gain = T + jarg

. (3.52)

3.3. Revised Equations for Wo and Wgo

The Qervo-loop considerations discussed in Sec. 3.2 have introduced so many modifi-
catiuviis to the equations developed earlier that it is desirable to consolidate all of these
changes into a revised set of equations for Wp and Wpo. Starting with the latter, from

Eq, (3.19), we first evaluate the averaged cross-correlation products from signals E; and
Ey, as defined in Eq. (3.7):

(E1E3) = |Jj12e724 (3.53)
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(EE%) = |Egl? = |ngl? +|J;) (3.54)

Substituting into Eq. (3.19) results in the convenient expression,

woo =] W1(E1E§)]
02 =|~ —=
|Eg?

b

| [fgl? + [

[ Wildil%e™ 2"']

-W; (‘—‘”9) Pt (3.55)

Next, we convert the transient equations in Vp, Eqgs. (3.25) and (3.26), over to Wy
by using Eq, (3.24); i.e.,

1 +
Wa(e) = [BY - V)] = [(ﬂ—‘ﬁl) WF + (1—%) Wog] (3.56)
Wo(0) = By ~ Vo(0) = W, = WY, (8.57)

where V3(0) is the quiescent Vg evaluated in Eq. (3.42). Then the transient equation in
Ws becomes .

Wy = [Wy(0) — Wa(o)] et + Wy(eo), (3.58)
where
. 1+p ;
@ = —;6—- and p = po(l '*"Pi). (3.59)

Note that steady-state part Wa(ec) has two distinct components:

_ ) 1+ oy
bearu-steering component = +— i (1 T “) Wy

and

" R
retrodirective component = (m) Woa .

When power ratio P; is close to zero, Wyg is also close to z:ro and the beam-steering com-
ponent is dominant, As P; increases, u increases, and the beam-steering component is
attenuated while the source retrodirective component increases in magnitude. For large
P; ratios where u >> 1, the beam-steering component becomes negligible and the source
component dominates, essentially ‘““capturing” adaptive weight Wa.
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3.4. Adaptive Loop Performance

o

R

2

fuitial Conditions and Assumptions—Recall from Eqgs. (3.6) and (3.7) that quiescent
receiver noise prevails up to time t = 0, when a single narrowband interference source is
switched on in a step-function manner. Ratio P; of interference power to receiver noise
power is assumed to have a maximum limit of 40 dB. Whex coupled with a receiver
channel bandwidth B, of 5 Mc and a minimum servo gain factor j1g of unity, Eq. (3.50)

X
Ry

X

proes
2R

oy
B

3. results in an RC time constant 7 of 6,370 ps. Summarizing these conditions, together
@; with G, p. Wy, BS, and W5(0), we have. -
maximum ?; = P, = 10,000
!x. Bc = 5 Mc
§t 1o = 6,370 us
3‘ Mo = 1
N
:{f G = #o = 1
b R2ngl?  k2ingl?
QJF
k= po(l+P) = (1+P)
) W1 = ej Ho
Bf = (1+po)W} = 2¢7/%
Y
By _ * "j(lo
5 Wa(0) = Wi = e "0
Let us assume that the elements are spaced apart by a half wavelength d = A/2, to

simplify the oxprossions for ug in Eg. (3.2}, & in Eq, (3.4), and u; in Eq. (3.8).

Transient Behavior of Adaptive Weight Wo—The first performance characteristic of
interest is the transient nehavior of the adaptive weight Wo. This can be calculated from
Egs. (3.66) through (3.569), using the initwal conditions and assumptions listed above.

Se. RN

The transient behavior of Wy depends on iwo factors: the obvious power ratio P;
contained in u and Wog, and the less obvious phase-angle rotation which Wy undergoes in
reaching its adapted value. To illustrate the latter factor, Figc. 11a through 11d con-
tain four plots of the amplitude and phase of Wy vs time, with the same power ratio
P; = 100, but with source direction 0; varied. Starting with Fig. 11a, where the source is
directly on boresight (6; = 0 degrees), Wa must undergo a complete 180° phase reversal to
place a pattern null where it previously had a maximum, and it will be noted that it does
so by rapidly decreusing in amplitude to zero in about 45 us, abruptly reversing phase
180°, and then increasing in amplitude toward its steady-state value of 0.96. In Fig. 11b
the source is 10° off boresight, which requires Wy to rotate through a phase angle of 148°,
For this rotation, the amptitude drops sharply for about 45 us but does not decrease to
zero, and the phasc changes smoothly. In Fig, 11c the source is.30° off boresight, which
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requires Wy to rotate through a phase angle of 89°, Note that the amplitude dip has now
become rather shallow. In Fig. 11d the source is 50° off boresight, which requires Wy to
rotate through a phase angle of only 42°, and here the amplitude varies only slightly from
unity. If the source is moved further over into the quiescent pattern null at 90° off bore-
sight, Wy is already correct in both amplitude and phase, so that no iransient would occur. .

The effect of changing the power ratio amounts to changing the time scale of the
transient, as illustrated in Fig, 12, where we have the same conditions.as in Fig. 11b ex-
cept that the power ratio is now P; = 1,000. Note that the transient curves are almost
identical to Fig. 11b, but the time scale has been redauced by a factor of 10; i.e., the in-
crease in go.rce power level by a factor of 10 has caused the adaptive loop to respond
ten times faster in changing W,

i\’.»:' 7

R
P

v
o

AL

i,ﬁ
9
i
B ‘
8 12 = <180
% M .
b : .
S 5 "
& : :
. *
:f‘z lo.:‘ + * QQOO‘OOQ'QOOQOQOOOTIEO
(;' s PHASE . .".‘000 ’.......cooos
E@ 5 .t : -
o . * R ‘ s
, 3 Noe.:. ot ' <120 {§
s ) HEN . . ™
, : ’ K o)
o s . - 8
4 w : . . P 2
s g 06 * . T
E : . AMPLITUDE :
g} d » . . . K %
H z . . : 7
§ 04 = . S <60 Z
i s o s
024 * 530
: 4 :
2 . K
P :
L3 i »
o“:.lo'.boo.b-00000000'.00.0.'09! * o 8 00 4 0 001 Ooool'ooonl'.o
0 5 10 15 20 25

/Ls
Fig. 12—Transient behavior of Wy for P; = 1000, 0 = 0°, and §; = 10°

Transient Behavior of Spatial Pattern—We easily obtain the behavior of the spatial
pattern of our two-element array by “freezing” weight Wy at various instants of time dur-
ing its transient change and calculating array output voltage Y produced by a far-field
test source of variable spatial angle 6; i.e., '

Y = S(Wye it + Woeiv), (3.60)

where u is the phase factor defined in Fq. (3.4), and S is the voltage amplitude at the
element mixers produced by the test-source. As a practical note, it would be necessary
to design the test-source signal and receiver system so that the test-source signal would
not be sensed by the adaptive loop; otherwise it might influence weight Wy. The spatial-
array pattern is proportional to the absolute value of Y, and for convenience in plotting .
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we generally normalize the function to the m.ximum value of [Y|. Since the maximum
value for two elements would be 28, the normalized spatial-array pattern function G(0, t)

o
S
N

s
Nk
e

ence noise, weighted by array weights Wy and Wy. From the expressions for signals Eq
and Eq as given in Eq. (3.7), output noise voltage Y, may be written as

5 becomes
&8
v# L f N <
E GO, = 5o =5 (Wreu + Waeiv): - (3.61)
e
‘Z Figure 13 contains five plots of |G(8), t)| under the condition P; = 100 £5; ¢ = 0, 0y = 0°, Rt
i and 0; = 15°, The plots are for time ¢ = 20, 50, 100, and 200 us, and for a steady state.
‘gm The quiescent, beam-steered pattern at time t = 0 is repeated in each plot to serve as the 3
£ beginning reference. Recall that this quiescent pattern, denoted as G4(6), was defined in %
3, Eq. (3.3). It may be verified by substitution of Eq. (3.57) into Eq. (8.61). Thus, start-
?;5.‘; ing from this cosine function at ¢t = 0 with 6y = 0°, the pattern plots demonstrate the 3
gf;f; progressive development of a pattern null in the direction of a source of interference at i
& 0; = 15", B
‘, It may be of intevest to note that the final steady-state pattern can also be manipu- ,,‘,é
T lated into a trigonom«tric expression. if the steady-state part of Wy from Eq. (3.566) is % t?;f';
:Qr substituted into Eq. (3.61). This yields %
o) pe
% Pj cos (ug —~ Ui) j(u-uy , ;%
;’; G(0, ) = cos(u~-ug) - *-——2—+Fl-‘—- e i x;w
2 2
3 PiG,(6;) . s 2
i = e T iy 3 S
3 G® - 555 ¢ W, (3.62) L
?5: where G4(0;) is the value of the quiescent, beam-steered pattern function in direction 6;. T
% Note that for the particular direction § = 6;, G(@, ) reduces to Zﬁiﬁ
£l g
& 2Gg(0) 2 cos (u; - ug) %
i , = = 15
%4 6:) = 5o p = —g s (3.63) j &
ifx which gives us the depth of the patfern null in the direction of the source of interference. %
?ff For the conditions in Fig, 13, the depth of the null would be about ~35 dB, which seems ;3
f\"« remarkable since P; is only 20 dB. This excellent null performance occurs bécause the g
§3‘3 voltage null in Eq. (3.63) is inversely proportional to power ratio P;. ,fg,
ey g
c Transient Behavior of Output Noise Povier—The performance factor of ultimate ,‘ﬁ
) “’33 interest in an adaptive array is the improvement in output signal-to-nois - ratio as com- 3
5 :’:f\ pared to a conventional array subjected to the same interference conditions. In this ﬁ
5 ratio, the signal portion can be readily calculated from the change produced in G(0, t), 7
T as discussed in the previous section. The denominator output noise portion, however, is t i@
more fundamental to the improvement that can be obtained and will therefore be treated ,;23*
in some detail in this section and the one to follow. %’
The output noise power is the sum of the quiescent receiver noise and the interfer- 3. ;‘J:;
3 .‘.‘f
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Ya

i}

WiE1 + WaEs

il

VWi + [Wongl® + J; (Wye 1% + Wael™) (3.64)

where the square-root term expresses the fact that n; and ng derive from independent re-
ceiver noise sources. This term can be simplified because the rms amplitudes are assumed
to be equal; i.e., ’

ViWingl? + [Warigl? = [ngl/IW112 + [Wpl2 . (3.65)

The value of this term prior to time ¢ = 0 represents the quiescent output receiver noise
voltage, and since both Wy and W2(0) have an amplitude of unity, ‘

gl AW + (Wl o = V2 ingl. (3.66)

Thus, the increase in output noise power caused when an interference source is
turned on can be expressed as a ratio of the.square of the amplitude of Y, to the square
of fthe quiescent ouiput receiver noise voltage; i.e.,
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»fi}é;g the ratio of |2 to Inal? cun be replaced by powst ratio P,

Figure 14 illustrates the plottmg of Eq. (3. 67), when 05 = 0° and 6; = 15°, for
power ratios of 10 dB, 20-dB, 30 4B, and 40 dB. These curves show clearly the direct
dependence on power:ratio P, of. the speed of transient response. If one examines the
amount of time elapsed for output noise power to drop to. the 3-dB increase pomt the
followmg -tabulated are obtamed N . .. .

*

o

p; Reécovéry Tithe to 3-dB Increase .
(dB) ] (us)

io- - "1,000
20 175
‘ 30 24
? , 40. . 3 ’

N s

‘Théteare two additional pomts of interest’ concemmg thé curves-in Fig. 14. First,
the starting value of the. output fioisé power at time t = 0 will, of course; depend on- the

B value of.the array space factor in direciion 0;; ; i.e., the locatlon of the interference source X -,
aﬁ $ ] by o i
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Fig. 14—Transient behavior of 6utput noise powe- when f; = 0°, 0; = 16°,
for P; values of 10 dB, 20 dB, 30 dB, and 40 dB
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in the quiescent spatial-power pattern of the: array ‘For our two-element array,. this is
réadily shown if the value of W2(0) from Eq (8.67)is inserted into. Eq..(3 07), simpli-
fying shows' that . .

Yal2 . ‘ S
(—'—%) = 1 + 2P;cos? (up - ;). (3.68)
2]ngl a0 ' . '

N ¥

Note\that thé squared cosine term is quiescent power patter value IGq(B,-)Iz.

Second the end or steady-state value of the increase in output noise power after the
transient has died out. We can obtain this by taking the steady:state part of Wz as given
in Eq. (3.56) and substituting it into Eq..(3.67) to get

| Yol? ! o . [4VP; cos (ug - u)] .
(2In2|2) =S {1+ (Wal? + YT (3.69)
t=co '

This steady-state equation results in. unity when P; = 0 or when P; >> 1, but it is greater
than unity when P; is near unity. This steady-state increase in output noise power is
shown:in Fig. 15 plotted vs ratio P; for the worst condition, where 0; = 00 Note that it
peaks at an increase of 1.75 dB when P; = 2, and that steady-state Wa(0) is.zero for that
particular ratio.
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X % Bandwidth Effects—The bandwidth of the power received from the source of inter- %
=g %ﬁ ference will affect the performance of ‘our adaptive array because the array-is frequency 3 LIS
.. ? sensltwe Recall that adaptive weight W ‘can assume only one amplitide value and one ] *
P ;5 phase value at any given instant of tlme. The delay {or advance) of an incoming sxgnal £ b
i at one element-with respect to another involves a true time-delay distance, as shown in
4’& 3 Tig. 16, where time-delay distance ; is referenced to the geometric phase center of the ::‘-
28 ¥ array. For any given wavelength A\ we defined u; in Eq. (3.8) as : gt
S5 ; G
S : :
cies I u; = d sin 0;. ; 3
AN A : %
s ‘ »
£

We have assumed an element spacing of half a wavelength, which can now be niore rigor-
ously ‘defined as wavelength Ao corresponding to cénter frequency fo of the RF bandwidth.
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Fig. 17—Interference-source pover spec/rum, uniform amplitude
lines spaced € apart -

Frequency f can be further defined as equal to f plus some offset Af, so that u; finally
becomes

u = (1 + %)%—sin 9. (3.72)

With this frequency-dependent relationship for u;, we can now handle an interference
source with bandwidth by dividing ite power into a number of discrete spectral lines, the
mth line of which has associated with it offset frequency Af,,, voltage at the mixers J,,, ,
and power ratio P,,. For convenience in calculation, assume a uniform amplitude spec-
trum of lines spaced apart by a constant frequency increment, as shown in Fig. 17. Fur-
ther assume that the lines are not coherent with one another; i.e., they will ot cross-
correlate. Under these assumptions, element signals E; and E, in Eq. (3.7) may be
rewritlen as the summations

~

M
Ey=np+ ) Jyeltm
m=] .
~for t =29, ) {3.73)
M
Ey = ny + Z I dm
m=3 J
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m=1
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Siottcr = 90
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3,
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M
A

total number of spectrum lines
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total voltag. cgnitude at mixers.
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From the same arguments on cross-correlation as used previously, the cross-correlation
products from the new E; and E, would be .

o SRR RT e S e L e 12 T

AT,

sote s 14

E.E]) = ZIJ 12 ¢734m (3.76)

m=1 ;f

teada

5

o

Bk = Ingl® + Z 1 12 = Ingl? + |12, (3.77) _‘

& RN AR

The new expression for (ElEn) i..ust be incorporated into W4, changing Eq. (3.55) to

ha
sk

_ W(EED) itg
Wog = - ———5—= - 1
|E,l

P, &'m, (3.78) '

m=1 ' :

$E5%

St

i
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The expression for u remains the same as before, since we interpret P; as the surh of all
the spectral-line power ratios; i.e.,

AIBEII G D
S0
PG

M

u= o1 + P;)

Yo
SRS

’,

,
.
il
YA

3N
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It is evident that W4, although optimum, no longer represents a perfect solution for
Wy because we now have a different phase angle 2u,, associated with each spectral-line
contribution, and we will get a single resultant vector representing the sum of all of these
small vector contributions. Thus Wy, represents an adaptation to the power centroid of
ihe interference spectrum.
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The ncrease in output noise power can be expressed by a ratio similar to Eq. (3.67):
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|7, 2 ud .
-—"-;= %1 + |Wyi? + Z B (Wyelm + wyemy?), (3.80)
2lng| m=}

RIS PN L9
Z;’%‘ﬁ % P

The sum term consists of a summation of individual power residues which correspond to
A the various spectral lines of the source of interference. Figure 18 shows a plot of Eq.
( (3.80) vs interference source bandwidth when P; = 2,000, 0; = 45°, and 8, = 0°. Also
plotted are the phase of steady-state Wy and the output noise that would result from the
auiescent, beam-steered pattern alone. The abscissa scale is percentage bandwidth, and
g edch successive point represents an increase of one more spectral line, which increases
) bandwidth by 0.2%. For example, starting at the origin, we have the entire power ratio
' of 2,000 concentrated into a single spectral line of ‘“‘zero bandwidth,” and steady-state
adapted weight Wy(o°) from Eq. (3.52) nulls it out to a negligible residue. The next
abscissa point then adds a spectral line at a frequency 0.2% higher than the first line,
giving us a “bandwidth” of 0.2% for the two lines and dividing the power equally into
1,000 for each line. The next point adds a third spectral line 0.2% higher in frequency
than the second, resulting i1: a “bandwidth” of 0.4% for the three lines and an equal power
of 666 per line. This process of adding spectral lines is continued up to 51 lines, resulting
in a bandwidth of 10% and an equal power of 39.2 per line. Figure 18 shows clearly the
deterioration (increase) in output noise power as the constant power f the interference
source is spread over an increasingly wider bandwidth.
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j To prevent confusion, recall that two different bandwidths are involved here: first, the
fixed channel bandwidth B, of 5 Mc, which determines a fixed receiver noise-power level;
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Fig. 19—OQutput noise power contributed by each of the 51 spectral lines for the

10% bandwidth case

second, the bandwidth of the interference source, expressed in percentage, which must
always be contained within B, in order to be meaningful.

The 7-dB increase in output noise power at 10% bandwidth for this case is a summed
result. It is of interest to see what happens to each spectral line in tae output for this
10% bandwidth case, and Fig. 19 shows the increxase in output noise power contributed
by each of the 57 spectral lines within its own 0.2% subbandwidth. Here we see the ef-
fect of adapting W, to the “power centroid” of the interference spectrum; i.e., the center
frequencies of the power spectrum are nulled out nicely by the single vector weight, and,
even though the nulling must deteriorate for frequencies away from band center, the ex-
tremes are well balanced to achieve the best overall noise-outpvt compromise.

3.5. Hard-limiter Modification

The adaptive loop configuration of Fig. 8. which we have been discussing, has two
drawbacks because voltage output Xy from the correlation mixer is proportional to the
power received at the elements:

1. The dynamic range of voltage X, is the square of the element signal dynamic

range. Thus, to handle the 40-dB range of interference power discussed in previous sec-
{ions, the correlator branch components must have a linear dynamic range of 80 dB,
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Fig. 20—Hard-limiter modification of single adaptive control loop

which is uncomfortably close to practical component limits. Conversely, a severe restric-
tica is placed nn the system input signal dynamic range.

2. The speed of response is proportional to power, as shown in Fig. 14, and this re-
sults in very sluggish response for weaker sources of interference.

The best solution so far discovered for alleviating these drawbacks has been to modify the
adaptive loop by incorporating a haxd limiter in the conjugate signal branch of the corre-
lation mixer [19]. This hard-limiter modification is shown in Fig. 20, where it will be
noted that an amplifier of gain A9 precedes the limiter. The purpose of the amplifier

is to boost the amplitude of the conjugate signal so that, after limiting, it will be of
normal local oscillator level when fed to the corrvelation mixer. This amplitude level is
denoted by constant h.

The modification changes the equations developed in the previous sections because
instead of the correlator product as given in Eq. (3.10), we now have
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. Xy = RY(W1Ey + Woks) 5T (3.81) 1
¥ 23
g The amplitude variation in the conjugate signal has been removed and only the phase kR
variation is retained. If we start with loop gain p in Eq. (3.29), we find that this becomes §

*
' = R2G'E 8 hk2G'|E 3.82
b= 2 ]Tzr - ' '2l$ ( . )

RO RN

SEEe

i

so that loop gain is now proportional to voltage level rather than to power level. If we

again define amplifier gain G' as in Eq. (3.31), based on the quiescent loop gain of /1(',,
the new gain setting will be

e

i by S
i e
2NN

-
P
A5

. (3.83)
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There is no longer a problem in getting the magnitude of the voltage coming out of the
correlation mixer, due to n, alone, to dominate over the thermal noise generated there,
because enough preamplification has been inserted to raise the output of the limiter o
local oscillator level (on the order of 1 mW).
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The loop gain can be expressed in terms of a power ratio as in Eq. (3.49) if the :
above two equations for ' and G' are used together with Eq. (3.54), so that

o _ hR2G'Ey)
Mo  hk2G' 7yl

-:z?:

R

= 1 +D;. (3.84)

&

P
P

Thus, u'/ug is simply the square root of the previous expression. :

tor
S

F

Turning next to the relationship between maximum interference power and basic ; ]
filter time constant 7, as in Eq. (3.50), we have . ;

—  [nB,7 : a2
M, = HoV1 + Py, = ( 1°0°>- 1. (3.85) f! 3

If we again take the maximum interference power ratio of 40 dB and a channel band- : %
width of 5 Mec for B,, then the value for 7 is

SRR

&

g
S

o ~ 0.637 X 10°8(1 + 100 yp). - (3.86) ;

kel R

33

For pg = 1, 7o = 64.3 ps, and the corresponding filter bandwidth is 2,475 cycles. Note
that because of the square root of P;,, , the basic time constant is faster now by the
factor of 100.
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Optimum weight Wy, as given in Eq. (3.19), remains the same, but when expressed
in terms of new servo gain factor y', it must change to the new expression
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W02 = - _]'E__li) = —Wl —?- Pl'e / “l. (3.87)
|Eq|2

The equations for new weight Wy will be the same as Eqgs. (3.56), (3.58), and (8.59) if
' is substituted for u in those expressions; i.e.,

Wy = [W)(0) ~ Wy(e)] e + Wy(e) (3.88)
W’°°=1+“6W*+ ——ﬁ,’W 3.89
2(*) 1+p "1 7 ez (3.89)
W5:0) = By — V5(0) = WS (3.90)

where

r_ 1+
a = :“ and IJ" =”(’)VI+]¢'-

Note that, because of the square root in ', a considerable change has occurred in both

o/ and Wy(e°). This is best illustrated if Eq. (3.67) is used to plot the transient behavior
of the increase in output noise power for the same conditions as in Fig. 14. The new set
of curves for the hard-limiter modification is shown in Fig. 21, where 6 = 0° and 0, =
15°, for P; of 10 dB, 20 dB, 30 dB, and 40 dB. The transient decay for a 40-dB ratio

is identical to the response in Fig. 14 because 40 dB was the maximum power condition
for both cases and results in the same value of o/, = a,, = 1.58 X 108 s~1. However,

the decay for ratios less than 40 dB is obviously much faster with the limiter modification.
Another large difference evident in Fig. 21 is the rather high steady-state residue ( approxi-
mately 7 dB) remaining after the transient term has died cut. This is principally because
the new loop gain &' involves the square root of P; and is therefore much smaller than the
previous u for the same power-ratio values.

To reduce the unacceptably large output noise residue, it is necessary to increase
quiescent loop gain p(') above the value of unity chosen previously, Although this in-
creases the value of 7, almost in direct propciiion to g, as seen in Eq. (3.85), it has
only a minor effect on o, and in turn on the speed of response. Thus, we can improve
the retrodirective amplitude portior of Wg(e°), by increasing g, without incurring a
penalty in response time. Figure 22 shows the increase in steady-state output noise
power residue vs P;, where §; = 0, for four values of quiescent loop gain y{, =1, 3, 10,
and 100. This shows that it is necessary to have u(', = 10 to hold the residue to a reason-
ably small value. To illustrate that the response time is unaffected, Fig. 23 shows the
transient behavior of output noise power under the same conditions as Fig. 21, except
that now p(') = 100. If u(') can be thus increased, the hard-limiter modification results in
a satisfactory output noise residue and retains its advantages of much faster response
time, double the dynamic range in decibels, and better loop stability. T'he disadvantages
include the inherent limiter problems of small signal suppression when more than one
signal is received and the possible generation of spurious response.
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3.6. Correlation Coefficient
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In the study and analysis of adaptive arrays, it is desirable to become familiar with
the concept of a correlation coefficient. This can be done by starting from the expression
for the mean square of output noise voltage Y,,, as given by Eq. (3.17):

AU oy s SN
LN
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o

¥, 12 = |(W,E;) + (W,E,)2.

If the expression for Wy, in Eq. (3.19) is used, |Y,|2 can be manipulated into the inter-
esting form

Y, 12 = [W,Eq |2 - (1Wool2Eq12) + (IWy — Wogi2|Epl2).

Then, for W, equal to W4, we would have the minimum output noise residue expressed
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IV,12. = [W,E,2 - |Wy,l2|E,I2

min
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Note that (1 - [p12) is equal to the ratio of minimvm output noise residue to the power
in channel 1 and therefore defines a maxitaum cand2llation ratio,

Ep e, (3.98)

Obviously, a good cancellation ratio demands a high degree of correlation betwecn the
two channels.

i’, If we now substitute the complete expression for Wy (o), Eq. (3.56), into Eq. (3.92)
28! to incorporate the steady-state servo error contribution, we find that the output noise
Fpe residue increases to the value

804 — 2 WiiE,|

B 2 _l1_1012+ (1 1152 2 a
- T2 = 1= 108+ (Tip) | @ ¢ o) gy + p| | TRBAP. 009)

45

}m’ 7,12 1 [Wos P1Ey \W1E, 12 (3.94)
5 .= - —l e . )
£ . wiER )
, Next, define a coefficient p for the ratio contained in the brackets; i.e., let
9 |W02|2lE-2 |2 |E,\Eq |2
plé = ——— .\ T %= (3.95)
IWIEll |E1 |2|E2|2 .
or define

o *
: ' p = L172), (3.96)
% AT '
A
Thus, we have a normalized cross-correlation coefficient for element signals Ejand Eq or,
f‘:& simply, a correlation coefficient in the statistical sense, because the time-averaged product
" (ELE%) is the covariance of E; and Eg, and it is being divided by the time-averaged mag-
) nitudes of E; and Eo which are the square roots of their variances. This is a useful con-
cept, because the real-life signals either consist of noise or are corrupted by noise, so that
£ statistical theory is needed for co.rect mathematical interpretation.
5
': Using the correlation coefricient, then, makes the minimum output noise residue
i simply
:\})
L ¥, 12.,= @ - 10i3)|W,E, 2. (3.97)
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§
; Fig. 24—An analog linear adaptive array configuration of six ele-
;:1 ments and six loops with beam steering
i
{ For the hard-limiter modification, # must be replaced by u'.
¢

i
8
¢ These expressions, based on the correlation coefficient, permit evaluation of decorre- i
: lation effects caused by mismatches between the transfer functions of the two channels, {
? differences in arrival times at the elements (array bandwidth effects), and multipath '
g effects. Reference 19 is recommended to the reader for further discussion of such de- :
; correlation effects. ;

4. K-ELEMENT ARRAY WITH K ADAPTIVE LOOPS

Now that the basic principles of operation and the performance characteristics of a
single adaptive servo loop have been discussed, we are ready to consider the multiple-loop
case, wherein each element of a K-element linear array has an associated adaplive servo §
loop. A possible configuration for such an adaptive array is shown in Fig. 24 for six ele-
ments. Note that each servo loop is arranged in the same manner as the single loop of
Fig. 8.
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Define element signal cotumn vector E in which kth element component E; is similar
to Eq. (3.7) and consists of quiescent receiver channel noise voltage n; plus a summation
of voliages associated with I external, narrowband interference sources:

E = [El,Ez,Es, ceey 1’(] (4.1)
where
L ju.(2k-K-1)
E, =n, +) Je' (4.2)
i=1
u,- = <lxd‘)31n Bi' (4.3)

Note that E? is the transpose of matrix E. The sources are assumed to be statistically in-
dependent; J; is the element channel voltage amplitude associated with the ith source, and
0; is its azimuth angle direction from array boresight. It is assumed that a given source
will induce equal voltage amplitudes at all of the array elements. Element nhase is refer-
enced to the geometric center of the array.

The beam-steering signals are intended to set up a shaped receive beam which is
steered in some desired azimuth direction ;. For quiescent conditions wherein only re-
ceiver noise is present, the adaptive weights will settle to steady-state values denoted by
the quiescent weight column vector W,. We want the components of this vectcr to be
precisely equal to the array weights one would choose to generate the desired quiescent,
shaped-beam pattern Gq (0). Thus, define Wq as this desired vector, so that

W, = [W,q, Wog, Wyg, ooy Wogl (4.4)

where
Wy = age o2k (4.5)
o =(2)sin 0. (4.6)

The values of element coefficients a, are chosen to achieve the desired beamshape and
sidelobe tevels. The quiescent beam pattern can then be expressed as

K
j(u-ug)(2k-K-1)
G, (0) = 8'W,) = ) g’ 7" )
k=1

4.7

where 8 is a column vector representing element signals of unit amplitude. Phase factor
u is associated with far-field angle variable 0; i.e.,

St = [Sl’ Sz, S3l ooy SK] (4.8,
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where .3"?
3,.
= o/u(2k-K-1) (14.9)
e L
L d ;‘_\‘2
: u = Z'i— sin 6. (4.10) | 33
The ccmponents of input beam-steering cclumn vector B* are related to the components
of W, by constants b;, so that 1
B*t = [B}, B}, B},..., By (4.11) i
73y
where
B;‘ = bWy (4.12)
The b;, will be evaluated In the following section, where it is shown ‘hat they are deter- ’g
mined by the quiescent servo gain factor. s
‘
Voltage outputs from the correlator filters are represented by column vector V, so 2
that we can define an adaptive weight column vector W for the configuration of Fig. 24: ;
(W, By [wn E
Wa B Ve
W= {Ws| = [B*-V] =|Bf| - |V5 (4.18) ks
H Lu,K | ! BK- L" ,K- ,:r
where V; is the voltage output from the kth correlator filter. ’
; Analysis of multiloop adaptive arrays requires some familiarity with the theory of
linear differential equations, matrix algebra, and- the solution of eigenvalue problems.
References 22 and 23 are recommended for readers who desire to review the mathematics.
i
é 4,1, Adaptive Weight Equations
]
£ The adaptive servo loops in Fig. 24 are the same as the single loop in Fig. 8, which
was described in Sec. 3, so that formulation of the adaptive weight equations can proceed
: “jiv' much the same manner. Thus, weight W, associated with the kth elcment is equal to
? beam-steering signal B,:." minus output V} of the associated correlator filter, so that
i
. & W, = Bf - V,. (4.14)
d
5. . . T - . .
gﬁ The averaged - srrelation mixer voltage X, is again the averaged product of element signal
g E} with the summed output of the array,
& 48
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g and voitage V, will obey the same RC filter differential equation, Eq. (3.12) and will

& result in the similar averaged value expression, é*f.,:
»f Ty
ave X %
0 ot Ve =7 E:Z W.E; (4.16) 2]

S

i=1

RN

”—'g: S

where

< €AV AT ey

T
2

Shiod
:‘:::;4

&y

v = k2G. (4.17) 4

& g

{, The quantity v is defined as a conversion-factor gain constant, assumed to be the same i

[y for each of the servo loops. However, whereas Eq. (3.12) contains only one unknown l§

& and can be solved immediately, the above equation contains K unknowns and must be ::g
handled as a member of a set of K simultaneous linear differential equations, one for each §

D adaptive loop. Fo. convenience, let us use Eq. (4.14) tv convert from V, to W, noting ko P
£ - T ar (4.18) e 2
i “3 %
{ whereupon Eq. (4.16) may be rewritten in terms of W as 3; -
5 % &
! —eeeee ;, @
4 dWy = p* * 5 4 §
To—3 * Wi = BY - 7[E})_ WiE; ). (4.19) |
5 =1 =
& The complete set of these weight equations for subscript & values of 1 through K may z‘é ftf
;»' then be expressed, in terms of the more convenient matrix notation, as £ %

N\

o

SSHARSRAS S e

el

7o O + W = B* - y[E°W'E] (4.20)

A
Al

where W' is the transpose of matrix W. Recall from matrix multiplication that
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(W'E) = (E'W) = ) Wik, (4.21)
: i=1
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so that the product of the three matrixes in Eq. (4.20) may also be written as

R

4 (E*W'E] = [E*E'W] = (E*E']W. (4.22)
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WILLIAM.F. GABRIEL

The, averaged product of ilic conjugaté of signal column vector E* and its ‘ranspose rasulis
in a matrix whose components represeni the correlations hetween the various element
chaniel signals or, in other words, the covariance maiiix of the set of system inputs. De-
fine this covariance matrix as M;

T*p T¥p. p¥p.

M = (E*E'] = |EJE;, EjE, EJE; ---|. (4.23)

LR s o o s e 0 coe

* * *
LEkEl EkE2 EkEa "'d

Note that the components of matrix M may be obtained from the channel signals defined
in Eq. (4.2), whereupon these averaged correlations are found to be

- L j2ul-k) '
(EFE) = ) ;12" for | # k (4.24)
i=1
or
_ _ I _
(EFE) = IBI2 = (Imgl? + ) W% for 1 =1, (4.25)

=1

where Eq. (4.25) represents the diagonal elements of M. It is evident ihat the covariance
matrix may be written as the sum of quiescent receiver noise matrix M, plus individual
interference source matrixes M;, such that

B L e nrxee G a4 e e

H
I .
M=M +) M (4.26)
i=1
where
- b
[-lnllz 0 0 ... ,
0 fmyl2 o ...
M,=10 o I --- @.27) },
L ° * . . . 1—
and ;
i
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G jdu, -j2u '

P ~_,ﬁ M; = T2 |e AP A T (4.28) ;

> ?‘ ; . . . ,1

g . . . . :

!

) « . . . . :

s 3

s Note th>. M is a positive, definite, Hermitian matrix. 3

N 8

Substituting M into Eq. (4.20) and rearranging, we obtain a concise final form of the ?2

adaptive-weight matrix equation, : 3

e

To %‘-—t" + (I + YM]W = B, (4.29) u

where I is the identity matrix, such that :

o o =
o = ©
o

1= [8,-,] = | (4.30)
. . . . §
The solution of Zq. {4.49) can be accomplished via a special transformation which con- §
sists of the eigenvectors ¢f the covariance matrix. From the theory of matrixes, we know %
that a positive, definite, Hermitian matrix such as M can be diagonalized by a nonsingular, ;

orthonormal, modal matrix transformation which shall be defined as matrix Q. Further-
more, we know that the resulting diagonal components are the eigenvalues of matrix M.
In accordance with the usual eigenvalue problem statements,

PRI FTUDOR QT

IM - 21| = 0 and Me; = f2e. (4.81)

35 Jsi’:\«.' s e
Y )‘3 "%’%‘iﬁ’ %

the g8 ;2 are the eigenvalues (real, positive numbers) of M, and e; are the associated

eigenvectors, / P
en| ; f;%
- €i2 ]
4 ; S
& — ;:; .
3 e = |es3. (4.32) 5 &
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WILLIAM F. GABRIEL

These eigenvectors, which are normalized to unit Hermitian length and are orthogonal to
one another, make up the rows of the Q matrix:

g~
LY

€11 €12 €13

o« o 0

Q =le3; 239 €33 " |. (4.33)

€21 €32 €93

€r1 €r2 €3 ]

Diagonalization of M by the Q-matrix transformation is expressed in the form

Fb12 0 0 -
. , . 0 622 0 PP
[Q@™Q'] = [8;°6;] = 0 0 BF .- (4.34)

Since M is a product of the conjugate of signal vector E and its transpose, Eq. (4.23), it
is evident :nat Eq. (4.34) may be written as

[Q*MQ'] = [Q*E*E'Q’] = [E*E’)
or
[E*E] = (23] (4.36)
where
E = QE. (4.36)

Thus, the Q matrix transforms real signal vector E into new orthonormal signal vector E.
The components of E are determined by the eigenvectoxs of M; i.e., from Eq. (4.33),

Z, = (e,'E). (4.37)

Note that these components have two special characteristics. They are decorrelated,
so that

(EXE) = 6 for 1#k, (4.38)

and their amplitudes are the square root of the eigenvalues, so that
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(EFE) = B2 for 1=t A

sl

or E

- iE | = 8. (4.39) ':
The transformation is equivalent to the operation of an orthogonal beam-forming network, §
‘ and this analogy is pursued further in Sec. 4.3 in terms of physical antenna feed networks. *'
i . The transformation of the E vecior in Eq. (4.36) suggests that a similar transforma- 3
L i'- tion may be performed on input beam-steering vector B* defined in Eq. (4.12), cince £
o | this vector can be viewed as the conjugate of an equivalent signal vector B. Therefore, i
‘a define transformed beam-steermg vector B as 3
3

', = QB or B*= Q'B* (4.40)

where the kth component is determined by the kth eigenvector,

B = {ef'B¥). (1.41)

The Q-transformation operations on both E and B* suggest an equivalent circuit ”’

i

representation for the system illustrated in Fig. 24, in which Q-transformation networks 4
would be used to achieve an “orthonormal adaptive array’’ system. This new equivalent 2
circuit representation is shown in Fig. 25, alongside a simplified schematic diagram of the 3
real system. There will be a new set of weights W in the orthonormal system, and if one -
develops the adaptive weight matrix equation in a manner similar to Eq. (4.29), it will

be found that _
*’ To %vtl + [I+ 7M]W = B* (4.42)
: 3
where 1
: M = [B*E'] = [828;]. (4.43)
Thus, in the orthonormal system we obtain a set of independent linear differential equa- ’J
# tions, each of which has a solution if the eigenvalues can he determined. Each of the E
s orthonormal servo loops will hehave as if the other loops did not exist, because the E; %
f signals are orthogonalized and have zero correlation. The kth servo loop, then, can be 4
& viewed in much the same manner as the single servo loop discussed in Sec. 3, and from
Eq. (4.42) its weight equation will be M
3 Wy I,
; To 55+ L+ = By (444) i

% %,:_0;’4

The first important similarity to note is the equivalent servo gain factor, which may be
defined from the above equation as

e = Y8 (4.45)

53

; PRI A W S momes S L AR R s MR
: MMc A A i




R hoX AP i P e i
Mg .t gt g e A A o3 e X 1§'u; BT M en } SV
4 gy ’“*E:;?"“'“‘«\ ?V:i‘ﬁ dr,!ﬁﬂ’«b,x,m % N A AR R "“:

WILLIAM F. GABRILL
T i
{4 —-1 ‘«‘ "
i - O
t ‘
" Vig |
.. -
amP] | [ame i
INT INT ]
4
= — {
f . . |
R ;
' |
| | I |
, ! Y .
: OUTPUT = WE !
. B* INPUT Z o .
: BEAM STEERING =l g
H 3 A
: () Real-system circuit I
;4
W — %‘ 3
: N <7 QF AN N o i X
! E E, Ey €y Eg Eg 48
. I Q-TRANSFORMATION NETWNRK ‘
A A A A :
£ Ep Es Eq &
. ' 2
A ; o
oY u’j?-
‘ . 3“;;
; 3
! )l
? o
: ,
Ay A A outrur (Al f A, A ‘
EE Bl BZ 83 ° 84 18- 86 % g\;
H _,&
Q>TRANSFORMATION NETWORK 3 &
B e e H x
(b) Equivalent orthonormal-system circuit ' ‘::r’
Fig. 25—Equivalent circuit representaticr.s for ,Mj
six-element adaptive array configuration -
DS
H ‘1’;‘3_
54 ;
© {M" ’ R m.mm&m“@fa&c%mb % 2 TR B wed At o ak e,




i
4

i e R
v v

SEp R

5, % ohT ST LA
T E gy

5
Fh3

g

e A A

& N
W‘:’@&:‘&S’«" B A R N A R A

~ &

IRy

o p
3

Pariry
EEHiantRt o
SERT R T T

PR

X

e

2

Rt

NRL REPORT 7739

so that our equivalent servo gain factors are now determined by the eigenvalues of the
covariance matrix. When compared against Eq. (3.29), note that positive, real eigenvalues
Bkz correspond to the square of a signal voltage amplitude. This analogy is carried
further in Sec. 4.3, where it is shown that any given eigenvalue is proportional to the
power appearing at its orthonormal network output port.

There is also an optimum weight ﬁ’o k» Which will be derived in Sec. 4.2 and found
to be equal to
- _ /1\ 5k
Wop = (#—k)Bk : (4.46)

If we substitute u; and ﬁ’o »into Eq. (4.44), it can be rewritten in the form

dw, . .
To 5t (L)W = Wy (4.47)

This equation is now of exactly the same form: as Eq. (3.21), and for a step-function
change in the input signal a similar solution may be written:

Wi = (W) = Wy(e)1e ™ + Wy(e0) (4.48)
whére
W, () = (%)Wok (4.49)
1+pu
o = ( o "). (4.50)

Also, W () is the steady-state weight, W; (0) is the initial weight value at t=0, and o
is the transient decay factor. The transient responses will now be determined by the
eigenvalues. This kth orthonormal servo loop may be modeled as the simple Type-0
follower servo shown in Fig. 26.

FILTER

Fig 26—Type-zero follower servo model for the ith ortho-
normal adaptive control loop
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% The next step is to relate these Wk solutions to real weights W;. Note that the out-
% puts of the two systems shown in Fig. 25 must be identical; i.e.,

Q K K

3 Z Wiy = ) Wik

. k=1 k=1 (4.51)

WE = WE = WQE
‘ Thus,
? W =WQ or W=@QW, (4.52)

and the solution for the kth real weight becomes

Wk = (elkﬁ’l + ezkﬁ’z + e3kﬁ’3 + oo +eKkWK)' (4.53)

ek ————— Ao 1 % e

Each real weight is therefore a summation of all the orthonormal weights.

Substituting for W in Eq. (4.29) results in

ro g 1QW + [QF + YMQ'IW = B*. (4.54)

NN A 57 B O PP WA R AT et

T

Multiplying through on the left by QF, we get

kst e Y 2,

ro Z1QTQ'W] + [QQ + YQ*MQIIW = QB*. (456)

Because of the orthonormal properties of the eigenvectors in the Q matrix,

P I

[Q*Q'] = I, (4.56)

and by Eqg. (4.34) the covariance matrix will be diagonalized by the @ transformations,
which results in

A

aw Yo
roSp + [+ v6)8, )W = B,

DETRIITRITEISTIRN S 07N whaw e o

Next evaluate the b, coefficients which relate B* to W, (Eq. (4.12)). To do this in
a simple manner, assume quiescent conditions in which only receiver noise is present, so
that the element channel signals are decorrelated and there is no difference between trans-
formed weights and real weights; i.e., the quiescent Q matrix would be an identity matrix,

quiescent Q = Q, = L (4.58)
The quiescent covariance matrix Mq from Eq. (4.27) is already diagonalized, and if we
further assume that the receiver noise power in all element channels is equal and denoted

by [p|2, then from Eq. (4.34)
56

Using Eq. (4.52), we can go back to Eq. (4.29) to verify the orthonormal Eq. (4.42).
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QM Q) = (e8] 3
or .‘z“.}
BeZ = Ingl?, (4.59)

so that we have a smallest eigenvalue 502 equal to the receiver noise channel power. This
smallest eigenvalue then defines a minimum servo gain factor ug, from Eq. (4.45):

PR o

%
%
i

fo = B (4.60) %

Since quiescent steady-state weight W(e°) must be equal to Wq by definition, we can apply
Eqs. (4.49), (4.46), and (4.12) to get

= 1 «_ [ B
Wor = <1 + po)Bk N (1 + yo)qu

bt L W R T IR i S

or
by = (1+ Hp). (4.61) 2
Thus, the coefficients of the input beam-steering signal B* are always greater thun the
coefficients of W, by the factor (1 + y). ; ’@
u 3
Combining Jigs. (4.49), (4.46), (4.41), (4.12), and (4.61), one can rewrite W () in ; 5"’
terms of W, to obtain ;’v
1+ : 5
Ho\.- . 1 fe
Wi () '(1 oy ) ak (4.62) : %’i
§ #
where 3 A
: 3
Wy = (e;:'wq>. (4.63)

1x

~

e

B e

qu is the kth component of quiescent beam-steering weight vector Wq in orthoncrmal
space.

¢

.

If we assume quiescent conditions up to time ¢ = 0, with only receiver noise present,
5o that the external interference sources are switched on at ¢ = 0, then

vk bow
SRRt

e

NS e N TN Rt

We(0) = Wy, : (4.64) ,i

oA and Eq. (4.48) may he manipulated into the convenient form i
i i

ERR 3
185 5 G -oyt (Mg Mo\ 4 :
Z 5;;3 W]; = qu - (1 -e )(‘_"_”k + 1) qu . (4.65) 3:
‘vh? 2
i
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WILLIAM F. GABRIEL

This equation is convenient because (#; - ig) will be zero for all eigenvalues that are
equal to {302, and those terms are thus eliminated from the computation. The expression
will be used in following sections.

4.2, Signal-to-Noise Optimization

It is well known that a uniformiy weighted array gives the maximura signal-to-noise
ratio when {ne noise contributions from the element channels have equal power and are
uncorrelated. These conditions are approximately valid when receiver noise and uniformly
distributed sky noise are the predominant noise contributions; they pertain exactly in
linear array antennas with half-wave spacing. Jlowever, when there is directional interfer-
ence from other in-band transmitters, from jainmers, or from natural phenomena, the
noise out of the element channels will be co related, and uniform weighting will not
optimize signal-to-noise ratio. The solution to the general problem is readily obtained
by the elegant mathematical approach of riaximizing ratios of quadratic forms. Refer-
ences 24, 25, and 26 are recommended for a discussion of the optimization procedure
and a more detailed mathematical treatment. Other optimization procedures and alternate
performance measures may also be found described in the literature {14,21,27-39].

Maximum signal-to-noise (S/N) ratio per se is not really the desired object of our
optimization, because we are willing to compromise on S/N ratio to buy some control
over the quiescent steered-beam characteristics. For example, it may be desirable to con-
trol the main-beam shape, sidelobe levels, pattern null placements, or array phase center.
Since these desired constraints, or controls, must be incorporated in the input beam-
steering vector B*, it follows that one should optimize o:1 equivalent signal vector B.
Thus, let us assume that the array output signal power desired is given by the equivalent
expression

s = |W'BJ2. (4.66)

The array output noise power is assumed to derive from the quiescent receiver channel
noise plus the noise signais received from external sources of interference, as defined in
Eq. (4.2) for the element channel components of E. Qutput noise power is therefore
given by

n = |WEI, (4.67)

and we can formulate our signal-to-noise performance index as a ratio of these two quad-
ratic forms:

tni2

s - W'BJ” ) (4.68)
" WER

Equation (4.68) can be manipulated readily into a ratio of Hermitian matrix forms, as

s _ [WBI*[B'W] _ W*[B*B']W
" [WE]*[E'W] WH[E'E\|W

,,,,,,,
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W* AW

s T e——
n WHMW

(4.69)

where A is a positive, semidefinite, Hermitian matrix (a one-term dyad) and M is the
positive, definite, Hermitian covariance matrix described in Egs. (4.23) through (4.28).
In acenrdance with the procedure outlined in Ref. 26, the optimization of ¥q. (4.69) re-
sults in the eigenvalue expression

AW = %MW, (4.70)

where s/n now represents an eigenvalue. The maximum value of s/n which shall be de-
noted with a zero subscript, as (s/n)g, is the largest eigenvalue of Eq. (4.70). Further-
more, because of the properties of the matrixes involved, it also happens to be the only
nonzero eigenvalue. The unique eigenvector W, associated with eigenvalue (s/n)q there-
fore represents the optimum element weights. Thus we have

AW, = (%)OMW. (4.71)

Substituting for (s/n) from Eq. (4.69) and cancelling the common term (B/W,), one
obtains

wzl)‘tB*

B*= (0"
WirMW,

W,. (4.72)

The quotient on the right-hand side is just a complex number, which we shall denote by
C. The desired optimum weight vector is then obtained by inversion of Eq. (4.72), or

Wo = & (M1BY). (4.73)

Hence, the optimum weights may be obtained directly by inverting the known (or esti-
mated) covariance matrix.

It is interesting to examine Eq. (4.72) under the assumption of quiescent conditions,
whereby the covariance matrix would be M, as in Eq. (4.27), and the “optimum” .
weight must be W,, from Eq. (4.4), by definition. The quotient term reduces to unity
for

B* = M,W,, (4.74)

and Eq. (4.72) is then identical to Eq. (4.74). This establishes the optimum relationship
for B* when W, has been chosen to satisfy de.ired quiescent beam characteristics. For

the simple quiescent noise conditions assumed in this discussion, M, is a diagonal matrix

59

a7

o < AT

5o

> © e AAMTA £
L A~ R e b R A SR

[Ey

3K p sl s

el a2 sy

N Y

PR

N

p
H
¢
H

ot Rttt i, M o o b B, b P B e g g

5,

e 7 o i "',-"“;s =

X
Ln

X

Ry

%

X5

L DAYEL
ekl

.

'
=3

i

: .
1 \é""‘\;

N
e st
?v.:‘,“\.’?}.

2 MM o

=

e

oy

&

Ay

ENIP

i
RO

o

b

ko



jn ¥ % TR T T v g
ity s o O

WILLIAM F. GABRIEL

= e WA

and results in B¥ components being equal to the W, components multiplied by constants.
Recall that these constants were denoted as b, in Eq. (4.12) and that we evaluated the
b; in Eq. (4.61).

b A s e o L LA

prin AN

_ If Eq. (4.74) is substituted into Eq. (4.72) for the general case, our control law for
' optimum weights becomes

B* = Mqu = CMW, (4.75)
' where :
WM W ?
‘ - (99 "e (4.76)
W}',"MWO

; This optimum control law can be converted into orthonormal system variables by multi-
} plying through from the left with Q* and 'substituting for Wy from Eq. (4.52),

v BSATMAN HA B R 2 N AR My 29 e e £

4 whereupon
- Q*B* = CQ*MQtWO
, ﬁ* = 0{3‘28”] WO ";‘l
3 or 7
! A 1 811 A% H 4
; Wo = &l=5|B"- (4.77) s 3
i °e
Equation (4.77) is the basis for the W,J 4 defined in Eq. (4.46), since the kth component i §§
of the above Wy vector may be written as ! P
-~ 1 ’} ’E"‘é
o - ()2

‘;{3':%1. ot

where , = 7ﬁk2. The constant 7y/C may be ignored, since Wy, may be multiplied by any
nonzero constant without changing the value of (s/n)g. Thus, we have derived the neces-
sary relationships for calculating the optimum weights from a known (or estimated) co-
variance matrix.
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4.3. Q-Transformation Physical Network Analogy

o
%
&3

o4
¥

The Q-matrix transformation as defined in Eq. (4.33) is a rather complicated mathe-

..
5t
22

225,

matical matrix operator composed of normalized and mutually orthogonal eigenvectors. &
. Refer~.ces 22 and 23 discuss the related eigenvalue problem and the procedures for : ;ﬁt
. -ing these eigenvectors from known covariance matrix M. Fortunately, computer / ;ff
L. Zrams are available for carrying out the laborious calculations invoived. Despite the P f~§‘
complexity associated with their mathematical evaluati~;, however, Q-matrix eigenvectors i 4
have a relatively simple interpretation in term- .1 physical feed networks, and this inter- E:S
pretation will be presented here +2 .ive a better insight into the operation of adaptive i
arrays. ! %
L
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Essentially, the components of the eigenvectors may be interpreted as array element

v, o R s e AT
& RO UTRAE Ty S FAT e R
PRI PAVINUN TV A

weights, giving rise to a set of orthogonal, normalized eigenvector beams. The ith eigen- "’
vector beam may he expressed in the form 3 g
K ;
£(0) = (8'¢) = ) eySy : (4.79) q g
k=1 7
w where S and its components S; were defined in Eqs. (4.8) and (4.9), respectively. Next i %4
define a variable Z, related to spatial angle 0 as ! @‘2
N P i{;
7 . i o
; Z = el (4.80) i 2
” where u = (wd/\) sin 0, as defined in Eq. (4.10). The locus of Z is the unit circle in the ! ’ "?
- complex Z plane. If we factor out the term S; from the summation of Eq. (4.79), g;(0) e; B
may be rewritten in the variable Z as § &
1 K-1 9 1 . i
5 g:0) = (*—) fej1 + eoZ +e;3Z° + -+ +epZ™ "1, (4.81) ; ;
g i \/7 il i i3 iK a :
2 3 :
which expresses the eigenvector beam in familiar array polynomial form wherein the ; ]
i eigenvector components become the coefficients of the array polynomial.
From the work of Schelkunoff [40], we know that an array space factor F (Z) has §
% the two related forms . 2
£ F(Z) = ag + 6,2 + apZ2 + agZ8 + -++ + ay_, 2K (4.82) %
i
) : i
- F(Z) = ag.1(Z - 2)Z ~ 2502 - Z3) -+ (Z - Zgy); (4.83) :

5
F

5

i.e., it may be expressed either in the polynomial form or as the product of zero factors
containing the roots of the polynomial. The roots Z, Z,, Zg, ..., Zg., are the zeros
or null points of the array space-factor pattern. Knowing the null points, one can solve
for the array polynomial coefficients, or conversely, knowing the coefficients one can
find the null points. All of the (K-1) null points will be located on the Z-plane unit
circle.

W

e

P

Pt
Xaat)
XA

A%y
A

oy
R
S

e AN
X \\’:.
A

t%;

&
o

Schelkunoff’s null-point concept is particularly applicable to the patterns associated
with adaptive arrays for the following reasons:

I

i

1. Adaptive arrays form nulls in the directions of interference sources.

W
3

%
Ay

2. An array of K elements possesses (K-1) degrees of freedon, which are repre-
sented by the (K-1) nulls. The behavior of adaptive arrays relates to how many degrees
of freedom (or nulls) are “captured” by the interference environment.
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(b) Constraint of two nulls

Fig. 27—Davies null-control networks

e X N A A s,

3. Controlled null placement may be in~orporated into the input beam-steering
array weights.

1,

R0 SASSIINREeE

B
4. Constrained.null positions are usually associated with the eigenvector beanss. %

7

v kS
Z Networks in which independent control of paitern nulls is 1eadily achieved have %
2N _ been described in the literature [41], and it is instructive to review their operation for a 5
u simple six-element array. Consider first the network shown in Fig. 27a, wherein one de- ;%5;
. gree of freedom is consumed to accommodate the constraint of placing one null. We Z
Z‘ - form an array of (K-1) “elements” in which the new “elements” are subapertures con-
R 4 sisting of adjacent clement pairs phased by ¢, to the direction of an interference source. 74
{_? 3 Each subaperture has a £, (sum) and A; (difference) output port. All of the Z; ports ’%
g contain power from the source, but the A; ports would receive little or no power because g;
) : of the null being directed toward the source. S
) E |
7 ] 62
% |

ot
bR
A

.
v - > = - TR e e g I T T SR e e -
B e o S i e e el SRR R Y TR T L 1 2 R ot h e ke e on e F e e e T N




B TR A
e

Ay

ST

&

N2

2t oL YA, Y

A
T

s el

g paBa b
A

-

e

.

R

S5 S

LR A e

RN

g

o s eadey b
- o

~
e

e

<

77 sy

{1"“:?;:%‘;}(\? £33

A, "3.?‘_*‘

4
RS ALY

2N

2,
NG
e

<3
(15
qI' 3

55y
7

2

.,

Vedin i
SRS SR QLIRS
¢ SRR

G
-

. -

st o,
L

N S A S S et e et e S N e

A

NRL REPORT 7739

The network shown in Fig. 27b consummes two degrees of freedom to accommodate
the constraint of placing two nulls. We now form an array of (K-2) “elements” in which
the new “elements” are subapertures. consisting of three adjacent elements phased by ¢,
and ¢, to the directions of two interference sources. Each subaperture has three outputs
of interest, labeled £, Ay, Z54A,, and A;A,. The T, A, ports receive power from the
source at 0, ‘but none from the source at 6, and vice-versa for the £,A, ports. The

unique A; A, ports receive little or no power from either source because of the two
directed nulls.

This network implementation of controlled nulls can be continued untii ali {¥-13
degrees of freedom have been consumed, whereupon one obtains a complete “Davies
tree” matrix network, as shown in Fig. 28. The network has six output ports of interest
to our discussion, and we can write the associated array pattern functions by inspection

for half-wavelength element spacing, because ; and A, are simple cosine and sine
functions:

£1(0) = (2,482454445)
£5(0) =~ (81Z5458,46)

- 83(0) = (A;A5234,A;)
, (4.84)
8,(0) ® (A1Z323434,)
g5(0) ~ (218,Z3454,)
85(0) ~ (A1AgA3A,A5)
where
Z; = cos (u - u;)
(4.85)

4; = sin (u-y).

We have K beams which may be used to resolve up to (K-1) interference point sources.

Note that the last beam g(0) is unique in that it olone contains all (K-1} controlled nulls.

This network represents an intuitive first approximation to the operation of the Q-matrix
transformation because it is capable of achieving a shaped spatial coverage incorporating
constrained null suppression of interference sources up to the limits of its degrees of
freedom. However, except for those special cases involving orthogonal sets of uniform
illumination beams, the network cannot serve as an exact analogy because all of the
beams represented in Eq. (4.84) are tied together in a fixed relationship by the same
(K-1) null points, i.e., by the same phase shifters. This restrictive relationship prevents
the beam array vectors from possessing the optimizing characteristics associated with
true eigenvectors.

To uchieve an exact representation for the Q-matrix transformation, each eigenvector
:.ust have its own (K-1) null-controlled network, i.e., a network similar to the one as-
sociated with beam gé(O) in Eq. (4.84). In addition, a multiplicative constant must be
added to permit normalization. Figure 29 illustrates a simplified schematic of such a
network for the ith eigenvector, where the orthonormal oulput voltage is £; and the
eigenvector beam m=zy be written as
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Fig. 29—Simplified schematic of (K ~ 1) controlled-null network representing one :
eigenvector of the Q-matrix transformation
5(0) = CiA185A34,45. (4.86) :
The output power from this network will be exactly equal to the eigenv-.lue 612; recall ]
from £q. (4.39) that q
“ ¥
' (E,'*E() = Biz- (4.87)
Each null in Eq. (4.86) corresponds to a zero of the associated array space factor poly-
nomial located on the Z-plane unit circle. If we denote Z, as the rth zero, then from
Eq. (4.80),
(Z~2,) = el _ el %r *
= 2" gin (- w,), (4.88) ;
and we can readily convert Eq. (4.86) into the fcrm of products of zero factors:

C;bi
8OV = S B - I)@ - B8 - ) - Z)E - T (459)
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where 2
¢ = o Tuytugtugtugtug) (4.90) ?{
®
To demonstrate an application of the eigenvector network of Fig. 29, let us take the i
case of a single narrowband source located at angle 0;. Eq. (4.31) shows that this single ;
source would result in only one unique eigenvalue $,2; the other eigenvalues would be i
multiple roots assumed equal to [302, the output receiver noise power (Eq. (4.59)). There §
would be only one unique eigenvector e; associated with {312; the other (K- 1) eigenvec- M
. tors are not unique. Eigenvector e; is found to be equal to %
: 1 jbu j3u ju -ju -j3u -jbuty, A
§ e =—\/—_é-[e el et el e e 1] (4.91) ? zL
} where %
uy = 5 sinfy. (4.92) A
§ Note that the eigenvector phesing is simply the complex conjugate of the element signals ) ;
5 weceived from the single source interference. From Egs. (4.81) and (4.83), one obtains, ?
§ for unique eigenvector beam g,(0), é 25
i s
. 1 .
£,(0) = (8'¢y) = — ‘F(Z) (4.93) ’ ;
Ve &
¢ d
FZ')=1+Z'+(Z')2+(Z')B+ @)+ (2" (4.94) |3
i or ii :
: F(Z') = (Z' - Zg)(Z' - ZENZ' - ZRNZ - Z)(2' - 2) (4.95)
i
: where ;
‘ o (Z). i2teuy) - (%) . :
: zZ' = <Z1)- e 1) and Z, = ( z,) = elnl3, (4.96) %
L Eguation (4.94) is recognized as a uniform-illumination array factor, and one can readily q?f
convert g4 (6) to the familiar '+ gonometric form K

b

b7 £

sin 6 (u - uyq)

V6 sin (u - uq)

Thus, the unique eigenvector beam is a uniform-illumination beam centered on the source
at ;. Figure 30 shows the Z-plane unit circle with source point S, plus all five null
points equally spaced around the circle by 27/K rad. If the network phase shifters in
Fig. 29 are set. to produce the null points shown in Fig. 30, the correct vigenvector beam
will be obtained. i

£0) =

(4.97)

o

The formation of the remaining nonunique eigenvectors can be accomplished easily
for this single-source case by using the null points of Fig. 30 to successively center uniform
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2 .5

K R

, illumination beams at Ny, No, N3, N4, and N5. Note that each of these beams incor- 4 5
t porates constrained null point S;, which is the location of the jammer. This will resulé e &
in a set of orthogonal, uniform illumination beams such as that obtained from a Butler é :9

matrix feed network. The associated eigenvectors are similar to e; and result in the fol- : &

lowing complete Q matrix: : 3

- . . . . A ; ¥

e;5u1 e13u1 e/u, e-/ul e-/3u1 e-15u1 $ %

oSz iBug  up  jup  -jBup  -[Buy ’ %

: E

| (e JBus s . . E

- - v 53

Q =—F . 4.98 &

VB |/ . . . . (4.98) z %3

: e jbug \:: %
J 5“6 ié i:;ﬁ

L
P
\c
R

u.
i

If we use element signal components as defined for Eq. (4.2) with the single source lo-
cated at 04, i.e,, if

: Khadur:
R

SR

8
o

juqy(2k-7)
b

Ek = nk + Jle (4.99)

ey
18z,
3

A
BRewly

then the transformed orthonormal output signals are
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_("01 +"\./6']15T

g2

N S b TR ST IRNY AT

SO oA S

n
QE 03 , (4.100)
. n04

RO A
=5
]

Nos

Rgoe

wheré ng; represents the summation of quiescent receiver noise voltages n; at the ith out-
: put port. Define an input noise vector N consisting of the n;, 5

SrRA B R e e R i

S

N’ = [ny, ng, ng, ny, ns, ngl . (4.101)

e,

Then

|
%
N =QN or ny = (¢/N) (4.102) i
i
Cross-correlating any two of the output noise voltages, results in i

g = @NE)

*t PN FNT
e;' [N N‘]el

N SEINTL < Sth PSR PR e AN B e ey

el {17,128, ]e;. (4.103)

If we assume equal magnitudes of receiver noise power in each channel, such that I'ﬁkl2 =
|fig|? for all k, then Eq. (4.103) may be written as

55
4

—_ Ingi2  for i=j
(nginoy) = IMol*(e}e,) = o (4.104
0 for i#j

z

T S e BN R N Ny W R, P S v+

bR AR enlafai i

Thus, although each .output-port noise consists of a mixture of all the input noise voltages,
the outputs have zero cross-correlation because of the orthogonality of the Q-matrix
eigenvectors. Also, the noise power at any output port equals the input receiver noise
power, since eigenvectors are normalized to unity Hermitian length:

e

£
T

TS 4

e \ PR

Rigsl2 = (nging;) = 17p!2. (4.105)

.
SN

S 86 B AN, it Ao ST DAY D P A B Bk i A 5 bt ey £ 23 A

5

e

The squares of the absolute ralues of the orthonormal output signals in Eq. (4.100) x
oqual the eigenvalues of the covariance matrix,

By
82

p2 S
a RPN

E e, 88kt

(I7ig1? + 67;12)

R

i

gl = B2 for i#1, (4.106 g
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SRS ¥
where we note that the power from the interference source appears at oniy one otipit b E

&

NS Ty
REEEE,

R

port for this single-source case.

=

It is also of interest to see what is obtained for transformed input beam-steering

vector B*, from Eqgs. (4.98) and (4.41). Since the eigenvectors are all uniform- ‘% ~f‘ ‘
illumination array factors, we have, from Eqgs. (4.12), (4.61), and {4.5), N RS
B = (e*BY) EE
b =
i S
= (L + o)W, ) N
. 4 5
1+ e - P
= __I:l_(_) Z akel(ui uo)(zk 7) (4.107) z ;\.;
Ve o 5 p
From Eq. (4.7), we see that the summation equals the value of the quiescent beam pattern 3 .
at angle 0;, or G, (;), so that B*is simply o k-
G,(61) ) 5
5 1+ pg\ | Gq@2) k-
B* = QB* = o (4.108) :. 2
V6 J{G,(03) ?;;
Gq O6) fg
So we find that the components of B* are proportinal to the quiescent beam pattern §
sampled at the orthogonal eigenvector beam positions. §f~
We have evaluated the complete Q transformation for the case of a single source of ‘ %
interference and have interpreted the eigenvalues and eigenvectors in terms of the physical p fg
network analogy of Fig. 29. Further application of this concept will be made in follow- i %
ing sections for more complicated distributions of interference sources. 7 4
4.4. Retrodirective Eigenvector Beam Concept P ‘if;
‘5’? 3 73
£ A valuable insight into a fundamental principle of operation for adaptive arrays may : ‘z;
Q be gained by examining the formation of retrodirective beams, as illustrated in Fig. 1. ~* &
¢ We saw in the previous section that for a single narrowband source of interference, we ’i ﬁ
4 obtain one unique eigenvalue and one unique eigenvector which produces a uniform- K %;
# illumination, retrodirective eigenvector beam centered on the source at 6, as given in % 4?:
4 Eq. (4.97). Note that even though a complete set of X orthogonal uniform-illumination .
¥ beams was set up by the Q-matrix transformation network, only one of those beams was A %
retrodirective toward the jammer, and it was produced by the one unique eigenvector, It 4 %

will be shown in this section that adaptive array pattern performance can be character-
ized by ronsidering only the uniyue, retrodirective eigenvector beams; the arbitrary,

e

2L

Rt W
T

gg nonunique eigenvector beams are not essential and need not be evaluated. % K
- e il
- X B
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The necessary array output pattern function G(0,¢) can be derived most readily by
considering the output of the orthonormal system of Fig. 26b for array input signal
vector S, defined in Eq. (4.8) and recalling that the output must be identical for both
the real sysiem and the orthonormal system; i.e.,

K K
GOt = ) WS =) W§ (4.109)
i=1 i=1
or
G, &) = (W'S). (4.110)

The vector § of course results from the Q-matrix transformation operating on the input
signal vector S:

S = @s. (4.111)

From Eq. (4.33) we see that ith component &,- would be given by

K
S /9 = Y eusy 112)
k=1

But this summation defines the ith eigenvector beam as in Eq. (4.79), so that

) ' éi = (eits)‘ = g;(0)

or (4.113)
K ~
GO,t) = ) Wig(6).
i=1

Thus, our output pattern function is a summation of the K eigenvector beams weighted
by the orthonormal system adaptive weights.

A convenient equation for W; has already been developed in Sec. 4.1 under the as-
sumption that quiescent noise conditions hold up to time t = 0, when the external sources
of interference are suddenly switched on. Repeating Eqs. (4.65) and (4.63), it was found
that W; may be written as

- - oyt (M = HBo\ -
W, =i - (l-e l)(.._.__..ui+ T )qu (4.114)

70

2

Yo

7,

3

%

S T

,

2%y

(=
2

ey
¥

T

L m,E:u: é‘.‘”é«,g d

KU 272 - MBI TV SC R A A
.,-;~ R . .

e Wt £ a —_—— o — A e Rt AP A p e o AR R e sn

- Pl N A W Ty . -~ . ¥ . %
) R b T T %y B gtng o 3L 5 L e IR A ‘ 2
N LI + A diettd e AR : e, E ? A v AN :
RPN s 40 W gt mmw&ﬂMM*m&u%Mﬁ&&Mémi N



TR ey D el ey o s S F e Bt O gl by
SN SRR @@v&&g@”f%“m@?% ER Ry

o Lo kv SRR LA

AB P SHAN AT L IS I I A ST NN L ARG R TSN SRS

NRL REPORT 7739

where

K
qu = (e:.ktwq) = Z e;';cqu. (4.115)

vffq,- is the Hermitian scalar product of the quiescent beam-steering vector Wq and the ith
eigenvector. It represents the ith component of }Vq in transformed orthonormal space.
Note that at time ¢ = 0, Eq. (4.114) reduces to W; = W,;, and Eq. (4.113) results in

K
G6,0) = W,8(0) = (Wq’S) = (Wq‘QS). (4.116)
i=1
But from Eq. (4.52) we sce that
Wq’ = Wq‘Q (4.117)
or
G(6,0) = (Wq'S) = Gq(0), (4.118)

where quiescent beam pattern Gq (0) was defined in Eq. (4.7). This result could be an-
ticipated, of course, from the sampling properties of the orthonormal eigenvectors or
merely froin the fact that the quiescent outputs from the two systems must be identical.

The final step, then, is to substitute Eqs. (4.114) and (4.118) into Eq. (4.113),
whereupon we obtain the Jesired relationship,

K
-a;t (M= Bo\ »
G@,H = Gq(e) - Z 1L-e @; )<_‘t:_1_)wq,.g,.(e). (4.119)
i=1
Recall that '
1+
o = ————
To
“1 = 751’27
and
Mg = 7302-

Thus, the cutput pattern function of our adaptively controlled linear array consists of
two parts. The first part is quiescent beam pattern Gq (0), and the second part, which
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e

A

is subtracted from G,(0), is a summation of weighted, orthogonal, eigenvector beams.
An important point in the weighting is that the numerator (i; - #g) will be zero for all
eigenvalues that are equal to quiescent eigenvalue {302.

e e TR Y T N

s L s ek B2
IS

Therefore, one may disregard all B02 associated eigenvector beams in the summation,
retaining only the unique eigenvector beams, which also happen to be retrodirective.
Another important point in the weighting is thai the transient response time of the
‘ unique eigenvector beams is controlled by «;, which is proportional to the eigenvalue.
A large eigenvalue implies a fast transient response for its associated eigenvector beam,
whereas a small eigenvalue results in slow response.
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Let us first apply the above pattern function to the case of the single narrowband
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source located at angle 6, which was discussed in the previous section. Since there is
: only one unique eigenvalue 312, we have only one nonzero term in the summation, so
: that Eq. (4.119) reduces to
GO, = G,0) - (1 —e )LL) i ¢ (0) 4.120) ;
’ q —-e gy +1 q181(9), “.
: where ay = (1 + uy/79) and py = 7[312. From Eq. (4.97) in the previous section,
! 1 fsin K (u - uy)
£:(0) = — E L ] , (4.121)
; VELsin (4= uq) "
: and from Eqs. (4.107) and (4.7),
; R G,(64)
; W, = -——Z/E . (4.122)
From Eq. (4.106), 512 was evaluated; it can be used to convert the servo gain factor term
5 to a more meaningful form:
B = (Tol? + KITy %) b3
;
f M (IRl + K1y 12 ‘
; 0 11 %) ;o
= - = (1 + KPy), 4.123 ;
Ho 7'"0 |2 1 ( )
where P, is now the ratio of jammer power to receiver noise power at the preamplifiers.
If g is set equal to unity, which would be normal practice for the circuit of Fig. 24,
the servo gain term becomes
; K1 —Hp _ KP 1
| (1) - (avam) 124
3 and Eq. (3.120) can be rewritten as P
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Fig. 31—Steady-state adapted pattern for single source, Case A; power ratio Py = 1,260,
located at 84 = 21°
-0yt Ple(Gl} sin K (u - ul)
= -(1 - : . 4.
G(,1) Gq(o) (A-e )<2 + KPy sin (u - uq) (4.125)

This gives us the performance for the single-jammer case in easily understood variables,
without any need for either eigenvalues or eigenvectors.

To illustrate the use of Eq. (4.125), Fig. 31 is a plot of the quiescent G, (6) pattern
(dotted line) and the steady-state adapted pattern (solid line) computed for an eight-
element linear array (K=8) with a jammer of power ratio P; = 1250 in the first sidelobe,
at 8, = 21°. G_(6) was chosen as a uniform-illumination pattern steered to broadside.
Figure 32 illustrates the two parts of the adapted pattern on an expanded angular scale:
the.quiescent G, (0) pattern (dotted line) and the retrodireciive eigenvector beam pattern
gi (9) (solid line) which has been multiplied by its weighting factors, i.e.,

0 = (11 fsin K (u = uy)) ]
& 2+KP |9 1)\sin(u-—it1_) ) (4.126)

Note that the weighting factors cause the peak of the retrodirective eigenvector beam to
become alined exactly with the sidelobe magnitude corresponding to the angular position
of the jammer. This produces the deep null in the adapted pattern when the two parts
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PFig. 32—Retrodirective eigenvector beam g'1(9) for single source, Case A

are subiracted, of course, and one can reacily compute the depth of that null at the
jammer position from Eq. (4.125):

(sin K(u-uy)

S SN VNS VAW D S FINW AA Ko e VRN Mo ARy B s

S ~ ) )=K for 60 =0,

] KP
G(04,t) = [1 -1 -2 %1 (2 - I}P;)]Gq(ol). (4.127)

In the steady state t = o, Eq. (4.127) will reduce even further to the simple form

G(84,%) = ('Z'TZEF,) G,(6y). (4.128)

’ Thus, for strong jammers the gain is reduced by the considerable factor of the square of
KP, in the direction of the jammer, effectively eliminating the jammer power from the
output of the adapted array,
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’\ Fig. 33—Transient response for single source, Case A, for source power ratios of 21 dB and z
. 31 dB; eigenvalues 1,001 and 10,001, respectively ;
i : . 4
N Transient response can be shown conveniently by plotting the increase in output i
> noise power, proportional to P;[G(6,¢)]2 for this case, vs time. The values of G(04, ) ¥
2 are calculated from Eq. (4.127). Figure 33 illustrates such a transient response (solid 2
line) where P; = 1,250 and T = 12,750 us, which result in &; = 0.784. The dashed- 3

line plot wus cumypuled tc 10 dB less jammer power Py = 125, whereby oy = 0.078
and the convergence time is correspondingly ten times longer.

Next apply Eq. (4.119) to the case of two narrowband interference sources of
nearly equal power ratios P; = 1,250 and Py = 1,200, close together in the first sidelobe
of the quiescent pattern, at 6, = 18° and 6, = 22°, respectively. If one forms the co-
variance matrix (Eq. (4.26)) for this case and solves for the unique eigenvalues and
eigenvectors, the solutions listed in Table 1 are obtained. The exact procedure for ar-
riving at these solutions will be discussed in Sec. 4.5. Note that there are two unique
eigenvalues and two associated unique eigenvectors, but that the ratio of the two eigen-
values bears no relationship to the jammer powers, which are essentially equal in this
case. Such widely different eigenvalue solutions will be found to be typical of situations
in which sources are close together in terms of array beamwidth. Using the solutions for
512. 622, e, and e, from Table 1, we can evaluate the associated u;, o, Wq,-, and g;(0)
for substitution into Eq. (4.119). Figure 34a illustrates the resulting steady-state adapted :
pattern (solid line) for our eight-element array, and Fig. 34b shows an expanded plot of ;
the sidelobes in the immediate vicinity of the jammers.
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2 v Table 1 7 8
\ Eigenvalues and Eigenvectors for a Two-Source Case* ;; @%
B “ 7o
e 3 Eigenvector . Phase Angle 1.5
4 Coefficient Amplitude (deg) M %
0 : 1,1 0.340120 69.7471 b
N 1,2 0.351501 8.3626 3 ‘;;
b L 1,3 0.359156 -53.03 E
;f 14 0.363004 245.573 x ?”fi
v § 1,5 0.363004 184.175 P A
L £ 1,8 0.359156 122.778 i 3
o 1,7 0.351501 61.3852 { E

o 1,8 0.340120 0 g
2,1 0.537157 250.308 ¢
4 : 2,2 0.387808 188.701 i g
Bz - ; 2,5 0.234347 126.989 F-
e : 2,4 0.078413 64.5464 PR
: 2,5 0.078413 185.762 4
- / 2,6 0.234347 123.319 5
e ) 2,7 0.387808 61.607
i { 2,8 0.537157 0 o
, ! *Unique eigenvalues: 18,544.4 and 1,057.58. L
«; g Note that the pattern nulls are very closely alined with the positions of the two strong x l
e ; jammers in this case. In later examples, we will see cases where the nulls are not so well ZE
AT, ; alined.
Figure 35 shows the components of the adapted pattern on an expanded angular { (

scale: the quiescent G, (0) pattern (dotted line) and the two retrodirective eigenvector H

beam patterns g1 (6) (solid line) and g4(6) (dashed line): Pox

? S8R
u A

{ £10) = W,12,0) (4.129) b s
; £,(0) = W 28(0). (4.130) ’ ?;i

Beam g (0) covers both sources in the manner of a centered sum beam, and its power L

gain of approximately 7.57 at the source locations leads to a total output power equal p

to the first eigenvalue: f

By’ 2 2 -

—‘5 =1 +P1g1 (01) +P2g1 (02) fé‘,

Bo 5

= 1 + (1250 + 1200)7.57 L

| £

18,544. (4.131) P
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Fig. 35—Retrodirective eigenvector beams g4 (6) and g;(8) for two sources, Case B

Note that the weighting factor W,, does not aline the peak of g;(0) exactly with the
sidelobe magnitude of either source, although it comes close enough that its subtraction
would cause a null structure close to the final nulls in that sidelobe region. Eigenvector
beam g4(6) splits the sources in the manner of a difference beam, and its power gain of
apprcximately 0.43 at the source locations leads to a totai output power equal to the
second eigenvalue:

oty

5
By

1+ P1gs?(8,) + P2gz2(02)

1+ (1,250 + 1,200)0.43

1,057. (4.132)

An interesting point here is that both eigenvector beams contain power from both of the
sources, so that one may be curious as to how decorrelation is accomplished. To explain
this, we start with the ith eigenvector beam output from Eq (4.37) and substitute the E
vector components from Eq. (4.2):
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RS
|

= (e,-’E)

"

2 K
(efN) + ) J, ) eyelriPEKD (4.133)
r=1 k=1

where N is the quiescent receiver noise vector defined in Eq. (4.101). The noise part
is ng;, as defined in Eq. (4.102), and from Eqs. (4.79) and (4.9) we see that the sunma-
tion ia k is simply the value of the eigenvector beam pattern at angle 6,, or

K
2k-K-1
&,) = Z eike/ur( ‘ (4.134)
k=1
where
u, = er sin 6,.
Thus,
. 2
B, = ng; + ) 4,5(6,). (4.135)

r=1

From Egs. (4.104, (4.39), and {4.59), the averaged correlations from (4.135) become

—_— 2
(Ei*Ei) = 61'2 = “70!2 + Z I"rlzgiz(ar)

ra=1
or
3_2 2
._.‘_2_ =1+ z Prgiz(er) (4.136)
‘BO r=1
(EFEy) = 0 = 17,1%21(0,)82(6,) + 172128, (0)85(9;). (4.137)

Equation (4.137) shows that the zero cross-correlation can be related to the products of
shie voltage pattorns; i.e., the product of [g,(0)&2(0)] is positive when 8 = 6, but nega-
iive when 0 = b5. This equation may be furtier generalized to a sumration for R
jammer sources:

R
BXE) = 1eo? ) Pg0,)80,) = 0. i#] (4.138)
re1
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Fig. 36—Transient response for two sources, Case B; eigenvalues 18,644 and 1,068

Equation (4.136) is the basis for Eqs. (4.131) and (4.132). Since all of the terms in its
summation must be positive or zero, the nonunique eigenvector beams that would result
in [312 = 1302 must incorporate nulls located precisely on the jammer positions.

Figure 36 shows the transient response for this two-jammer case, and one can readily
see the two distinct slopes associated with the two different eigenvalues. The increase in
output noise power for this case is proportional to

P1G2(0,,t) + PyG?(6,,t). (4.139)

Eigenvector beam g, (6), with a; = 1.45, attenuates both terms rapidly to the point
where second eigenvector beam g,(0), with ay = 0.083, takes over and completes the
attenuation at its slower rate. An exact expression for the output noise power will be
developed in the next section.

4.5, Performance Characteristics

Initial Conditions and Assumptions—The performance characteristics are calculated
from the equations developed in Secs. 4.1 and 4.4. One initial condition aiready mentioned
is that quiescent receiver noise is assumed to br the only system noise present up to time
t = 0, when the entire selected distribution of external interference noise sources is
switched on in a single step function. Another ussumption already discussed is that the
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receiver noise rms voltage in all element channels is equal and denoted by ng, such that

quiescent eigenvalue ,° is the square of its rms value, as in Eq. (4.59), and thereby B
defines minimum, quiescent servo gain factor pg, as in Eq. (4.60). Repeating these for ]
convenience, we have i@
A
B2 = Impl2 (4.140) ”
o =182 = k2GIm,l2. (4.141)

For the circuit of Fig. 24, it is convenient to choose unity for the value of u,, and we
assume that amplifier gains G will be set accordingly.

Once pg has been defined, it is convenient to express y; from Eq. (4.45) as a ra.
of eigenvalues, such that

B (B2

4.142
w " (o2 (4.142)

or
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This expression can be converted to jammer power ratios by Eq. (4.136), so that
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m= 1+ ) Pgl6,)]s (4.143

r=1

et

This gives an expression similar to Eq. (3.49). g

e

The next initial condition is to spzcify quiescent steered-beam pattern Gq (@) and
it associated set of quiescent weights Wq, as defined in Eqgs. (4.4) through (4.7). For
purposes of this report, Gq (8) is chosen to be a sirple uniform-illumination beam
formed by an eight-element linear array with elemenis spaced A/2 apart;
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where
= Zr_ 1
u g Sin 0

_~jug(2k-9)
W = e .

Then the coefficients of input beam-steering vector B* may be evaluated from Eqs.
(4.61) and (4.12) as

by = (1 +pg) =2

- _ o, g (2K-9)
B} = bW, = 270 . (4.145)

The maximum power condition must be considered in a manner similar to the single-
loop case discussed in Sec. 3.2, and a relationship similar to Eq. (3.47) can be derived
for the orthonormal servo loops of Fig. 256b, wherein the maximum servo gain factor u,,

is given by

s

2 B “t
b = o) < <__lco’°) _ 1, (4.146)

Bo |
where ﬁmz vepresents the maximum eigenvalue to be handled, or the maximum power to "
be delivered, at any of the orthonormal output ports. Channel bandwidth B, and basic j%ﬁ
filter time constant 7 are assumed to be the same for all element channel servo loops. ?g
Thus solving for 7 yields z}

A

10 Brn® 3

T = (—-) 1+ pol—7 (4.147) gy

B, 502 fz

or k.
10 < " ~*§

To = (;E) 14 kgt Ko Z Pgn’(0,)] - (4.148) .

¢ r=1 . j,{a’

Note that the maximum power, or maximum eigenvalue, will be much larger than s /%%

jammer-to-receiver-noise power ratios P, because the P, are multiplied by t' : power gain
of the retrodirective eigenvector beams. For example, in the single-source case discussed
in connection with Fig. 32, P; = 1,250, and from Eq. (4.121),
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Similarly, in the two-source case discussed in the previous section, we saw in Eq. (4.131)
that the largest eigenvalue was 18,544, whereas P, was 1,260 and P, was 1,200.

For the cases to be considered, a value of 2,000 for u,, will cover the largest
eigenvalues, and if channel bandwidth B, is kept at 5 Mc as in the single-loop case, then
the value for 7y f:om Eq. (4.146) should be approximately 12,760 us. Summarizing

these selected constants, we have

B,,2
M = | =)~ 20,000
Bo
B =5 Mc (4.149)
¢
Ty = 12,750 gs.

Output Noise Power and S/N Degradation—The performance factor of ultimate in-
terest in an adaptive array is the improvement in output signal-to-noise ratio as com-
pared t.. a conventional array subject to the same interference conditions. In this ratio,
the output noise power is fundamental to the improvement obtained and usually is suffi-
cient by itself for illustrating the transient behavior of the system. To calculate it, we
take advantage of the fact that the receiver noise is statistically independent of the ex-
ternal interference noise sources, so that we can add their separate output powers

linearly.

Starting with receiver noise, the output contribution can be expressed in terms of
either the real system or the orthonormal system in Fig. 25:

K K
|Y0n(t)|2 = Z lwknk|2 = Z IWino,'lz (4.150)
k=1 i=1

where ng; was defined in Eq. (4.102). Substituting for ﬁ’,- from Eq. (4.65) and for n;
from Eq. (4.105) results in

2 2K1 apr. (Hi = #o\] % 2
= LY fat e )
1Yy, ()1 = Ingl ;Zi [1 -(1-e )(“‘, 1 >] [ Wl (4.151)
K ~
1Yo, (07 = 17gl® ) [1 ~ Ae)) 21 W, (4.152)
i=1
Ay = (1 - e‘afi)(%l;‘—:—-‘;‘o), (4.153)
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T Z A PP

A;(t) will be zero for t = 0 and for g; = yy; i.e., for the nonunique eigenvalues. For
quiescent conditions at ¢ = 0, note that

K K
Y0, (0)2 = I7gl2 ) IWy12 = 1mgl2 D 1Wl?, (4.154)
: i=1 k=1
; since the noise power output must be the same for either system. Thus, Eq. (4.152)
may be rewritten as
K K N
You O = Rgl2 ) 1Wgl? - 3 (2~ A1 AW,12 . (4.155)
k=1 i=1

This form is convenient because the W ; associated with nonunique eigeivectors need not
be evaluated, since A;(t) = 0 for them.

The noise pow<r contributed by R external interference sources is simp'y a summa-
tion of their output power pattem levels,

R
Yo% = IRgl? ) 2,G2(0,,1), (4.156)
r=1

where P, is the power ratio of the rth source, 8, is its location, and G(2,,t) is given by

Eq. (4.119).

Total output noise power is the summation of Eq:. 4.155) and (4.166), and the
increase in output noise power is the ratio o: these two to quiescent noise in Eq. (4.154):

R P
|Y0(t)|2 ’Z‘IP,G?o(B,. t) - Z1 2 - A,-(t)]A;(t)|Wq‘_|2

—— = 1 i=

IYOn (0)|2 } ) (4.157)

K
[ fe
k=1

This increase in output noise power is the quantity usually plotted for illustrating the
transient behavior of the system. Figures 33 and 36 are examples of its application. A
pertinent characteristic of this performance index is that it indicates the general! magni-
tude of the adapted weights upon convergence to steady-state conditions; i.e., Eq. (4.157)
can also be expressed in a form using the real weights,

R K
P.G2(0,,t) + W, |2
1Y, (6)12 Zl &0t ZZ' ¢
= (4.158)
| Yo, (0)12 K ’
k=1
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in vs:hich the effect of the magnitudes of the weights is obvious.

f To normalize the effect of adapted-weight magnitude level, one can calculate the

7 degradation D, in the S/N ratio. This is simply the quiescent S/N ratio divided by the

adapted S/N ratio and leads to the convenient expression

7

5 2 2

= Gg"(8;)\ [1¥o(1)] (4.159)

G*(€5, )/ \| Y0, )12

o

where the ratio in the second term is Eq. (4.157) or (4.168), the increase in output noise :;?

power. Thus, we simply multiply the previous performance index by the ratio of the g¥

power pattern values in the direction of the signal 6. éi

i Covariance Matrix, Eigenvalues, and Eigenvectors—The eigenvalues and eigenvectors 8

f? of the covariance matrix are evaluated as solutions to Eq. {4.31): ?§

IM - 821 =0 and Me; = B, (4.158) §

where the Hermitian covariance matrix M is formed as indicated in Egs. (4.23) through :;

(4.28). Receiver noise power is assigned a level of unity for convenience in computation, ,§

since all noise powers are expressed as ratios to receiver noise power. Thus, quiescent i

$ noise matrix M, becomes an identity matrix, and the individual rth-jammer covariance ,g

matrix is then muitiplied by its power ratio P,, v -
;~ J—i "\“ﬁ
'y M, =1 (4.159) % e
. q ¥ 2
b4 2
: R 24 ;"‘g
y M=1+ PM (4.160) 3 -
;’ r=1 5\5 if 1
::g % A
- To incorporate bandwidth into the interference sources, the sumnmation in Eq. (4.160) is 4 %
£ further refined by dividing the jammer power spectrum into a number of discrete sp-ciral : E-

lines as described in Sec. 3.3. We assume a uniform amplitude spectrum of uncorrelated
lines spaced apart by a con.tant frequency increment, as illustrated in Fig. 17. If B,
denotes the percent bandwidth of the rth jammer and L, its total number of spectrum
lines, the power ratio and frequency offset of the Ith line are given by

>

CrE

ke

Ay

RN
B ARG s
e N I 8

i~
N2

Y20 g,

;"' i o
5 P, B o
b Py = (—f—) = power ratio of spectrum line " (4.161) 5 ’3}
55;'5 r ':f«‘ {:
i % r
?@ Afy = 21, —1—3-1-] = frequency offset (4.162) g Z
# 17 \w0/|"2 T \L, -1 : Y 7
5 ‘ s 5
g The element spacing of half a wavelength in Eq. (4.144) must now be defined in terms )5 é
% of wavelength Ag, which corresponds to the RF bandwidth center frequency fj, and a 4 £
B new phase factor for the Ith spectrum line is obtained, '”2 35

Y 25 e b =
= 5 - (4.168) i
2 '
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Uy = -f(-)-z-sm(}, = 1+-f; -2-sm6,

; B\l 1, (1-1 .
; U, = (1 + (TOLO'> [—- -2— + (m)])lzr' sin 8,. (4.164)

The covariance matrix may now be rewritten as a summation of the spectrum line
matrixes M, ,

R r
; M=1+) ) BMy, (4.165)
{ r=l1=1
[ 1 2in GItn i
% ¢ 12U P I
!

M, = 8]

L R T, (4.166)

Sy = exp [iu(2k - K - 1)], (4.167)

with u,; defined in Eq. (4.164) and P,; defined in Eq. (4.161). If m denotes the row and
n the column, the mnth component of the M,; matrix is equal to

A o A A s

My, = (S 8,p) = e rnm), (4.168)

Note that the calculations require four data values to be specified for each jammer:

v
I

, = ratio of tctal jammer power to receiver a0ise power,

D
I

, = spatial angle location off boresight,

K-
n

percent bandwidth of spectrum,

Ry
i

= number of discrete spectrum lines.

‘ Since the system cannot respond to noise outside of its element channel receiver
bandwidth B,, it is assumed that B, would not be chosen o exceed B,.
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Having formed the complete covariance matrix for some chosen distribution of inter-

ference sources enables us to solve it for the eigenvalues and eigenvectors, using the For-
tran computer program CMPLXEIG. This program was developed at the University of
Wisconsin Computing Center [42].

Program CMPLXEIG prints out the eigenvalues and their corresponding eigenvectors.
For a K-element array, there will be K eigenvalues and K eigenvectors. The minimum
value 602 that the eigenvalues can have is unity, which corresponds to receiver noise
power level, and many selected distributions o? sources result in multiple roots (eigen-
values) equal to unity. Such unity solutions 1 - the eigenvalues are called nonunique*
eigenvalues, and the corresponding eigenvectors printed out are generally meaningless
vectors. The useful eigenvectors printed out are those associated with the unique eigen-
values and, for CMPLXEIG, these are defined as eigenvalues greater than 1.01, which cor-
responds to an eigenvector beam delivering jammer power not less than 20 dB below the
receiver noise level. This limit for qualifying the unique eigenvalues is a matter of judg-
ment and may be selected within rather wide limits of perhaps 1.001 to 1.1 for our
purposes. Based on this limit criterion, the unique eigenvectors corresponding to the
unique eigenvalues are culled from the CMPLXEIG output, normalized to obtain unit
vectors in the Hermitian sense, and then saved in a data file. All vector data output cor-
responding to the nonunique unity eigenvalues is discarded at this point; Table 1 in
Sec. 3.4 is a typical illustration of the unique eigenvalue and unique eigenvector data
saved from the output of CMPLXEIG. All performance characteristics are then com-
puted from the saved data.

Although the nonunique eigenvectors are unnecessary ; or calculating system per-
formance, situations may arise in which it becomes desirable to operate with a filled Q
matrix. For these situations, one must construct the missing arbitrary, nonunique eigen-
vectors. A convenient approach to accomplishing this task is outlined in Appendix B.

Selected Distribution of Interference Sources—The performance characteristics of
several selected distributions of interference sources have been calculated to demonstrate
the behavior of our eight-element linear adaptive array. The distributions selected are
listed in Table 2, where they are identified by case symbols A through H. For each case,
the covariance matrix is formed as described above, and the associated unique eigenvalues
and eigenvectors are computed. From these, output pattem function G(0,t) is evaluated
by using Eq. (4.119), under the assumptions discussed above. The transient performance
is usually evaluated from the increase in output noise power, given by Eq. (4.157) or a
modificatic thereof to include bandwidth. If the magn; : of the adapted weights
changes appreciably, however, transient performance is evaluated on the basis of the
degradation in the S/N ratio, given by Eq. (4.159).

Case A corresponds to a single narrowband source in the sidelcbe region, one unique
eigenvalue (10,001), and one unique eigenvector. This case was discussed in considerzble
detail in Sec. 4.3 and 4.4, with the adapted pattern shown in Fig. 31 and the transient
performance shown in Fig. 83. It should be emphasized that these performance plots ave
very sensitive to the location of the jammer with respect to the quiescent steered-beam

*It is possible, though rare, to get nonunique eigenvalues (multiple roots) that are greater thzn unity.
For such cases, the solutions must be retained as if they were unique.
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Table 2
Selected Distributions of Interference Sources

Interference Sources Unique Eigenvalues

P R SN W SN Sy RS

Sap ot fEB s Yol

Case | Number Location .
of gzzg: Angle Ban(d;;l dth S%ei;?:m Number Values
Sources (Deg) °
A 1 1,250 21 0 1 1 10,001
i B 2 [1250.| 18 0 1 2 | 18,544
| 1,200 22 0 1 1,058
g c 2 1,250 18 0 1 2 10,812
! 125 22 0 1 190
D 4 40 18 0 1 4 11,616
1251 25 0 1 2,486
400 33 0 1 406
1,250 42 0 1 15.5
El 1 1,250 42 0 1 1 10,001
E2 1 1,250 42 p) 3 2 9,986
16.4
i E3 1 1,250 42 156 16 3 9,529
) 469
; 47
;

F 1 1,260 5 0 1 10,001
G 3 1,100 36 26 11 6 13,316
1,100 48 21 11 9,692
1,100 66 19 11 3,091
296
10.56
1.16
H 6 1,100 -66 i9 11 8 13,532
1,100 ~48 21 11 13,386
1,100 -36 26 11 12,619
1,100 36 26 11 9,682
1,100 48 21 11 3,224
‘1,100 66 19 11 350
14.7
- 1.18
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A
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pattern. For example, if the single jammer happens to be located in a null of the quiescent
B pattern, then even though the one degree of freedom involved has been consumed, th2
v single eigenvector beam will be deleted by the weighting factor qu = 0, the adapted pat-

d,
T A
: &,@grégi«:

o $L

e
A tern will suffer no change from quiescent, and there will be no transient response. The ’?’5
position in Fig. 31, with the jammer located at the peak of the iirst sidelobe, represents 73

a typical worst case for sidelobe jamming. The adapted pattern must shift its sidelobes to
accommodate the jammer, but there is little distortion in the main beam because only one
degree of freedom of the available seven has been consumed.

R R T
N 3 . N

Case B has two narrowband sources in the sidelobe region, with almost equal vower
ratios and located close together; two unique eigenvalues (18,544 and 1,058); and

. e T . S fem 2
A A e N o SRR

K unique eigenvectors (see Table 1). This case was discussed in detail in Sec. 4.4, wits -

terns shown in Figs. 34 and 35 and transient response shown in Fig. 36. Iinaportant polats

. demonstrated by this case include the widely different eigenvalues, the two different

eigervector beams, and the relatively slow convergence time even though both jammers

: are strong. 2

1 ﬁ: 3 ‘,
! Case C is the same as Case B except that the power ratio of the source at 22° is re- & o
"' duced 10 dB below that of the source at 18°; there are two unique eigenvalues (10,812 £
i , and 190). Note again that the ratio of the eigenvalues is much different from the ratio of 32 %
o the two jammer powers. Since tie locations of the two sources are the same as in Case B, ;; &
e ) the steady-state adapted pattern for this case is almost exactly as in Fig. 34. The unique Z k-
A I eigenvectors, however, are different and give rise to different retrodirective eigenvector E é
BN beams, as shown in Fig. 37. Note that the beam shapes remain similar to those in Fig. & 2

35, but that both gi (0) and gé (0) are shifted to the left so the respective peak and nuil
fall very close to the position of the strongest source. This provides the proper power
balance for achieving decorrelation between their outputs. The transient response shown

’
vty

240

¥

i3,

fﬁ?
-

P e N

2
¥ in Fig. 38 is much slower than that of Fig. 36 because of the much smaller second ] g
i eigenvalue. 3 :
. Case D has four narrowban. sources in the sidelobe region, unequal power ratios, and ;'
s moderate spacing; there are four unique eigenvalues (11,616, 2,486, 406, and 17). The :
,?’ steady-state adapted pattern is shown in Figs. 39a and 39b, which include an expanded 2
oy scale plot in the vicinity of the sources. Here we note that the four sources have “cap- E
5 tured” four nulls, or four degrees of freedom out of seven available, and that this large :eg
% percentage of null constraints causes an appreciable distortion of the main beam as well =
B | as of the remaining sidelobe region. This is a good illustration of the fact that adaptive 5
s, ! a?“ pattern nulls usually do not aline themselves exactly on the source locations unless the E z
ke sources are very strong. The retrodirective eigenvector beams are illustrated in Figs. 40a %
k. £ and 40b and are associated with the eigenvalues as listed below. & «c§
oAy % xS
e ; :::. . \fs\, H
&f? Fid Eigenvalue Eigenvector Beam % %
ol ——— P P — 5 2
b o 11,616 81(0) = W,12,(0) I
Eii el - i 3
o 2 2,486 85(6) = W,085(0) :
£ B = @ > X
e 406 g3(0) = W,32500) Y3
sy fady s ¥ ..?;
I g g'é 17 g;(@) = Wq4g4(0) % ‘,ég
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Beam g, (0) receives power from all four sources but functions essentially in the
manner of a “sum” beam for the two strongest sources, thus accounting for the largest
eigenvalue. Beam g,(8) also roceives power from all four sources, but it functions essen-
tially in th2 manner of a “difference’” beam, which places its difference null so as tc
balance off the three weaker sources against the strong source. Beam.g3(0) essentially
nulls out the strongest source and favors the summation of the other three. It isa
“single lobe in notch” type of pattern, Beam g4(0) brackets the four sources with a
“double lobe in notch’ pattern in which the two strongest sources are essentially nulled
out. Its low gain on the remaining two weak sources accounts for the smallest eigenvalue.

- s PIREANE T AR TR EAIMSS P FLORIE L LU IAXSTRETE SO IIETE,

: Note that the eigenvector beams become progressively more complicated and less
recognizable as to their function as we proceed toward the smaller eigenvalues. In fact,
it seems. meaningless to refer to beam g,(9) as a retrodirective beam since there is no
main lobe as such; and none of its several high lobes points toward the sources. How-
ever, the dominant consideration is still its characteristics in the directions of the sources
so as.to satisfy Eqs. (4.136) and (4.138), and in that sensr: the pattern is retrodirective.

i e

The transient response for this case is shown in Fig. 41, whete it will be noted that
D,, is the ordinate because the weight magnitude drops about 25% for this case. Note
also that the time scale is a combined linear and logarithmic scale with the transition
point at t = 6 us. The log scale permits better assessment of the long convergence time
. caused by the two smallest eigenvalues. Also note that the steady-state degradation in
S/N is about 1.5 dB.
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Fig. 41—Transient response for four sources, Case D; cigenvalues 11,616, 2,486, 406, and 17
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Case E has a single source in the sidelobe region, 42° off array boresight; various
bandwidths are used to demonstrate the effect of this parameter on our frequency-
sensitive adaptive array.

El (zero bandwidth) has one unique eigenvalue (10,001). ‘This narrowband case is
the same as Case A except for source location angle, and the two cases may be compared
to illustrate the dependence on locav. ,n. The steady-state adapted pattern i shown in
Fig. 42a and serves as the starting point in this bandwidth series of patterns. As in Case
A, the source ‘“‘captures” only one degree of freedom (one null), corresponding to the
single, unique, uniform-illumination eigenvector beam.

Case E2 (2-percent bandwidth) has two unique eigenvalues (9,986 and 16). The
steady-state adapted pattern is shown in Fig. 42b, where it is evident that a significant
change has occurred in the sidelobe region. Even with this small amount of bandwidth,
the single source has captured two degrees of freedom (two nulls), and the corresponding
two unique eigenvector beams would be similar to those shown in Fig. 356 for Case B,
ie, a “sum” and a “difference” beam. A belpful property of this case is that the two
eigenvector beams function effectively up to a source bandwidth of approxirately 10
percent under the conditions assumed here, so that the extra captured degree of freedom
results'in considerable adjustment accommodation to changes in bandwidth. It provides
the mechanism for obtaining a deep sidelobe notch of variable width.
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Case E3 (15-percent bandwidth) has three unique eigenvalues (9,629, 469, and 5).
The steady-state adapted pattern is shown in Figs. 43a and 43b, which include an ex-
panded scale piot in the vicinity of the source. The equivalent spatial extent of the
source is indicated for its 15% bandwidth. The single source has now captured three
degrees of freedom (three nulls) out of seven available, and the resulting distortion in the
adapted pattern is very evident. The corresponding three unique eigenvector beams are
shown in Fig. 44 and are associated with the eigenvalues as follows.

Eigenvalue Eigenvector Beam
9,529 £1(0) = W, 18,0)
469 £5(0) = W,562(0)

5 g50) = W, 3¢300)

The “sum” and “difference” beams, g;(e) and gé(e) respectively, are representative for
any of the bandwidths tested in this series, from 2% to 20%; i.e., this pair of beams re-
mains practically invariant. Beam gé(G) is a “deep-notch” pattern which is similar to its
counterpart in £ig. 40b except that the single lobe within the notch has 2 peak of -46
dB and thus does not show here. This third eigenvector beam comes into play at a
bandwidth of roughly 7% and, except for the notch region and its lobe, the pattern
undergoes very little change for the bandwidths tested, up to 20%.

The transient responses for four different values of source bandwidth are plotted in
Fig. 45. In general, convergencs rate slows down as bandwidth increases, because of the
small eigenvalues generated. To compute these curves from the basic output noise power
equation (Eq. (4.159)), we modified the source power summation to incorporate a
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summation of spectrum-line contributions over the bandwidth of the source, in the same
manner as diséussed.inthe previous subsection. This,

R r
source power = ) ). BiG2@,,?) (4.169)
r=11=1 .

where P,; is the spectrum-line power ratio given by Eq. (4.161) and G,(8,,t) is the out-
put pattern function for the /th spectrum line which requires the modified phdse factor
u,;, given by Eq. (4.164), for its evaluation.

Case F has a single narrowband source in the main-beam region, 5° off array bore-
sight; there is one unique eigenvalue (10 OOl) This case demonstrates the effects of
main-beam jamming, but one should keep in mind that it is the same as Case A and
Case E1 except for source location angle. The source captures only one degree of free-
dom (one null) correspondmg {o the unique, uniform-illumination elgenvector beam. The
steady-state adapted pattern is shown in Fig: 46, where it is evident that main-beam jam-
ming, produces rather severe distortions in the output pattern. An inspection of Eq.
(4.125), which specializes the output pattern function tc the single narrowband source
case, reveals that if the main-beam stecring direction 6, happéns to become alined with
the source direction 61, then the main beam may practically disappear. In fact, if the
quiescent pattern happens to be of uniform illumination, as we assumed for thesc calcu-
lations (Eq. (4.144)), then the entire cutput pattern function would indeed disappear (go
to zerz) for 6y = 6,.
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power drops even more and leads to a net degradation in S/N ratio for main-beam jamming.
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% The transient response is shown in Fig. 47a. There are two characteristics to note,
i? peculiar to main-beam jamming. The first is that the transient commences from a high
power level for 6, close to 8, since the source gets the gain of the quiescent main beum
h¢ at t = 0. The second is that the increase in output noise power typically drops below é
’: quiescent (0 dB) in the steady state, since the adapted weights are attenuated for 6, ;
v close to 6. The reason for the attenuation of the weights is that the unique eigenvector E
" is closely alined with the quiescent weight vector, and this leads to small or zero magni- ;
x tudes for the W, in Eq. (4.65), which in tum results in smail magnitudes for the real W, 3
: weights. Such attenuation causes the increase in output noise power to be unsatisfactory 3
as a performance index for main-beam jamming cases, so that it becomes dzsirable to é
Z consider the effect of the attenuation on the signal as well. :
: 3
. Signal effects may be incorporated by computing the degradation that occurs in the
5 S/N ratio D,,, formulated in Eq. (4.159). Figure 47b plots D,, for this case for 8, = 0°,
% and we see that there is a net steady-state degracation of about 4.5 dB in output S/N
7 ratio. Thus, although the output noise has decreased below quiescent, the output signal
; 1
; Case G has three sources in the sidelobe region, the locations and bandwidths have 3
4 been chosen to result in complete coverage of the sidelobe region from 30° to 90°. This
4 is equivalent to spreading out 33 narrowband sources rather uniformly in sin  spacing

over this sidelobe region. Six unique eigenvalues are associated with this case. Although
this case may not represent a practical interference situation, it demonstrates the remark-
able effectiveness with which the adaptive array uses its degrees of freedom to cope with

§ such widespread interference. Furthermore, it illustrates clearly that when interference i
" sources are grouped in a continuous distribution, the eigenvector beamns may be charac- :
¥ terized by a family of harmonic pattern “modes.” This case involves the first six modes

? of the set.

ij, The steady-state adapted pattern is shown in. Figs. 48a and 48b, which include an

expanded-scale plot demonstrating the remarkably low sidelobe level achieved throughout

% the entire jamming region from 30° to 90°. With only seven degrees of freedom avail-

able, the array cannot respond to the 33 interference sources on an ind‘vidual null basis,
but it can respond on a resolution basis because of the close spacings of the sources.
Thus, it depresses that entire sidelobe region by efficiently using six degrees of freedom,
or six eigenvector heams.

Previous plots of the eigenvector beains have been shown in relationgtip to the
quiescent pattern and, in fact, were adjusted in power level to the quiescent pattern via
weighting factors Wq,-; i.e , the patterns plotted have been gi'(0) = Wq,-g,-(e). However, the
eigenvector beams g;(0) are determined only by the covariance matnx and are completely

lependunt of the quiescent pattem.” Furthermore, these beams are characterized by
¢ *..». shapes or modes that constitute a sort of harmonically related family. To stress
+ v, xhnve two points and also to bring out the role of the Wq,- weighting, the eigenvector
Lt ams for this case are plotted as g;(0) directly and the W ; magnitudes are listed sepa-
ral<}v in the following tabulation, as associated with the six unique eigenvalues.
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Unique Eigenvector quil
‘ Eigenvalue Beam Weighting
0.083
' s a6 0.416
: 9,692 82(0) '
; 3,091 23(0) 0.07
296 24(0) 1.03
. 10.5 gs(0) . 0.64
’: 1.16 26(8) 1.04
1 The six eigenvector beams are plotted in Figs. 49a~49c, and their mode characteris-
, tics and Wq,- weight relationship will be briefly discussed. Also, their role in the transient
§ response shown in Fig. 50 will be pointed out.
g Beam g, () is the sum beam mode with no nulls inside the source region. This :
i beam sums all 33 sources with appreciable gain, thus resulting in the largest eigenvalue, o
} and has the fastest transient response. However, note that the Wq,- weighting is only
: 0.083, which relegates this high-power beam tc a relatively minor role in determining
: transient response and adapted pattern.

Beam go(0) is the “difference” beam mode with one null inside the source region.
Except for the null region, this beam also sums the sources with appreciable gain and
results in the second largest eigenvalue and the second fastest transient response. The
Wq,- weighting is 0.416, which means that this high-power beam has considerable effect
upon hoth the transient response and adapted pattern. It accounts for most of the initial
fast drop in the transient response.

¥ A
ey

TV DT LT AT IR GRA TN NN o

Beam g3(0) is a “single lobe in notch” type with two nulls in the source region. This (,%‘
beam is obviously of lower gain than the first two and results in the third largest eigen-
value of 3,091. Note the approximate alinement of this beam with the first two. Its j'ﬁ
W,3 weighting of only 0.07 drops it into a minor role, even though it carries appreciable @
power. It is interesting at this point to look at the adapted pattern at time ¢t = 8 pus, *ﬁ
} shown in Fig. 51a, whic'. incorporates the contributions of g;(0), g5(9), and g3(6). Note -5
4 that these first three eigenvector heams have already reduced the sidelobe level to ~30 dB i ;'é
for most of the source region. j ""t‘g}ﬁ
' 3
Beam g,(6) is a “double lobe in notch” type with three nulls in the source region. , ;v;;
This beam is of low gain in the source region and results in the modest eigerivalue of 296. ; 3
However, note that the Wq4 weighting is a strong 1.03, which essentizlly places this beam . wg
in control of the transient response after the initial fast drop caused by go(8). The slow ;:‘5
]

decay so evident in Fig. 50 is dominated by this one beam. It also carried the adapted
pattern quite far along toward its steady state, as shown in Fig. 51b for time ¢ = 120 ps,
which incorporates the contributions of the first four eigenvector beams.

Beam g5(0) is a “triple lobe in notch” type with four nulls in the source region. As
shown in Fig. 49c, this beam is of very low gain in the source region and resuits in the
small eigenvalue of 10.5. It does have a strong Wq5 weighting factor of 0.64, however,
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which gives it appreciable influence in the low sidelobe region, so that it causes the
adapted pattern to slowly converge very close to steady state. It requires some 3000 us
for its transient response.

o . e M ST A DA I WX ¥ S

Beam gg(9) is a “four lobes in notch” type with five nulls in the source region. As
shown in Fig. 49c¢, this beain is of extremely low gain in the source region and results in
an eigenvalue of 1.16, barely above quiescent noise level. This small eigenvalue causes
the servo gain term in Eq. (4.119) to have a value of only 0.075 and results in an almost
negligible contribution from the beam, even though its W 46 weighting factor is a strong
1.04, For all practical purposes, this sixth eigenvector beam could be dispensed with,
which means that the array is essentially devoting only five degrees of freedom to coping
with the widespread interference.

At Wy e b v

Case H has six sources in the sidelobe region, in whici1 the locations and bandwidths
have been chosen to result in complete coverage of the sidziobe region from 30° to 90°
on each side. It is essentially an application of the previous case’s source distribution to
both sides, to demonstrate how the array can take advantage of symmetry in the source
distribution to better use its limited degrees of freedom in coping with a jamming situa-
tion which occupies 60% of its spatial coverage. All seven degrees of freedom are
consumed.

The steady-state adapted pattemn is chown in Figs. 52a and 52b, which include an :
! expanded-scale plot, again <iemonstrating the remarkably low sidelobe level achieved
§ throughout the entire jam ning region from 30° to 90° on both sides (the patterns are
i symmetrical for this case). As in the previous case, the adeptive array is responding to
¢ the widespread jamming by depressing the entire sidelobe region. The transient response
for this case is chown in Fig. 53.

A complete set of eight unique eigenvalues i associated with this case. They are
listed below, together with the eigenvector beam identifications and the W ; weighting

£
i
2 magnitudes.
§ Unique Eigenvector Wyl
f Eigenvalues Beam Weighting
: 13,632 £(0) 71014
13,386 82(0) 0.024
12,619 g3(0) 81014 .
9,682 £4(0) 0.60 :
. 3,224 25(0) 2:10—14 3
350 26(0) 1.42
14,7 g(0) 31012
1.18 g5(0) 2.37
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Note the severe attenuation in four of the W ; weighting factors, which comgletely
eliminates any contribution from those beams. Nonetheless, all eight eigenvector beams
are shown in Figs. 54a and 54b and will be briefly discussed because of their departure
from the usual harmonic-mode series which have characterized all of the previous cases.
The reason for the departure is that the interference sources are aot grouped :n one con-
tinuous distribution, but are split into two distributions.

(o™ SOt w3 AW ORIV, D NG B N

Beams g4 (0), g2(0), g3(0) are of the sum mode type, each having appreciable major-
lobe gain in the source regions, thus resulting in large eigenvalues. However, note that the
qu weighting factors are so small that these high-power beams are eliminated from the
transient response.

Beam g4(0) is of the difference mode type, with appreciable gain in the source re-
gions 1o result in a large eigenvalue of 9,682. The W,; weighting is also strong, 0.60,
so that this beam alone controls the initial fast drop in the transient response of Fig. 53.
The effect of this single beam on the adapted pattern is shown in Fig. 55, which is plotted
at time ¢t = 8 us, and it is seen that sidelobes are already reduced to a level of about -28
dB by this time.

Beam gg(0) is of the “double lobe in notch” type, with modest gain in the source
regions resulting in an eigenvalue of 3,223. Like the first three beams, its weighting factor
is so small as to eliminate it from the transient response.
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f“ Beam gg(@) is of the “double lobe in notch” type, with low gain in the source re- ég
5 gions resulting in a modest eigenvalue of 350. However, its w ighting factor is a strong -
z 1.42, which places this beam in complete control of the transient response after the initial é‘%
g fast drop due to g4(9). 'The slow decay noted in Fig. 53 is caused entirely by this one -
%;: beam, and after its decay time of approximately 120 us the adapted pattern will be e
¥ virtually at its steady-state condition. g
¥ K.
Beam g4 (6) is of the “triple lobe in notch” type with very low gain in the source . %
““ regions, resulting in the small eigenvalue of 14.7. Tis weighting factor is very small, so it ' g
g plays no part in the transient response. %;
¢t ,QQQQ
£ Beam gg(0) is another “triple lobe in notch” type with an extremely low gain in the . ’%j
f«; source regions, resulting in an eigenvalue of 1.18, barely above quiescent noise level. Be- ! ;1
g}i cause this eigenvalue is so close to unity, the servo gain term in Eq. (4.119) will have a ! S
& value of only 0.083, resulting in almost negligible contribution to the transient, even | ﬁ
2 though its weighting factor is a strong 2.37. . b
5 : .
7 Although this beam does not contribute to the adapted pattern as expressed by Eq. ‘ g

RS
L2

(4.119), the reader should consider the fact that for this case the interference source dis-
tribution has consumed all seven available degrees of freedom, and jammer power is being
delivered by all of the eigenvector beams except gg(8). If one observes the Wq,- weighting
for each beam and applies Eq. (4.65) for the W, orthonormal weights, gg(0) will be the
only beam capable of delivering signal power to the output of the orthonormal system,
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;g Fig. 56 —Quiescent sum and difference tracking patterns ‘ \;
5 and thorefore it must be identical to the steady-state adapted pattern shown in Fig. 52 . ?
¥ i.e., for this case, G(0, ) =~ qsgg(e) i
" ' ‘{
;’3 Adaptive Tracking Patterns—It is of interest to see what happens to typical tracking :
e patterns when both the sum aad the difference pattern are instrumented to adapt to an' 3
4 interference environment. For the quiescent palierns, tapered sum and difference illumina- %
i tions were chosen as follows: \;
’ Weight Sum Difference 7
# W1 9.3 0..‘?82 i
Wqo 0.604 0.847 E
W,s 0.847 0.603 = 3
3
Wq 4 0.982 0.3 ‘;
Wys Q.982 ~-0.3 \ 2
Wee 0.847 -0.603 4
W, 0.604 ~0.847 i
Wes 0.3 -0.982 %f
These illuminations result in the quiesceat patterns shown in Fig. 56, which are plctted on %
a linear voltage scale to emphasize the slope and crossuver associated with the difference i
3
pattern. 111 3
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From Table 2, Case D was chosen as an appropriate sidelobe interference distribu-
tion. It includes four narrowband sources of unequal power ratios and moderate spacing
and results in the four unique eigenvalues 11,616, 2,486, 406, and 17. Its associated
eigenvector beams were as shown in Fig. 40.

A time sequence for the adapting patterns is shown in Figs. 57a-57d for times
t =12, 120, and 1,200 us, and for the steady state. At time t = 12 us, the sidelobe
structure has changed considerably on the right-hand side, but the main-beam crossover
region has not yet heen affected much. This time would incorporate the effects of the
first two eigenvector beams g;(6) and go(0).

At time £ = 120 ps, which wovld incorporate the effect of the third eigenvector
beam g3(f), note that the negative half of the difference pattern is collapsing. This col-
lapse changes both the crossover point and the slope at crossover. In addition, the sum
pattern is distorted and shifted to the left.

At time t = 1,200 us, which incorporates the effects of all four eigenvector beams,
the collapse of the difference pattern is almost complets, the crossover point is 4° off,
and the slope has changed considerably.

At steady-state adapted conditions, the distortion of the difference pattern is so
severe as to render it useless.

This example illustrates that tracking patterns may undergo severe detzrioration when
they are made adaptive to sidelobe interference. One method for coping witl this serious
problem is to incorporate constraints on the patterns in their crossover region by sacri-
ficing array degrees of freedom. For example, one might sacrifice a degree of freedom in
order to force the difference pattern to always maintain a fixed crossover positica regard-
less of sidelobe adaptation. ’

4.6. Hard-Limiter Modification

e dynamic range and transient response time of the configuration in Fig. 24 can
be improved by incorporating a hard limiter or fast AGC (automatic gain control) in the
conjugate signal branches, in the same manner as described in Sec. 3.4 for the single
adaptive servo loop. The modified circuit schematic is shown in Fig. 58. Note that each
servo loop is arranged in exactly the same manner as the single loop of Fig. 20. Refer-
ence 32 is recommended for a more rigorous mathematical development of the effects of
envelope limiting in adaptive-array control loops.

The modification changes ti:» oufput voltages from the correlation mixers, in that
the amplitude variations ir the conjugate signals are removed and only the phase varia-
tions are retained; i.e., Eq. (4.15) becomes

E¥ «
x, = k2h 7] Z W,.E,), (4.171)
i=1
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where A is an amplitude constant associated with the lisniter arrangement, assumed to be
equal for all channels. From Eq. (4.25) the |E, | are given by

2
J

N
S R

2t

. I —
Byl =1/ 17gl2 + ) 1F12; (4.172)

, i=1

RIS

LA 3 o
DR G T e

v

i.e., the rms voltage magnitudes are to be equal for all channels. Under these assvmptions,
one finds that the elements of the new covariarice matrix differ from the elements of M
. only by & common factor. This leads to the following equation, equivalent to Eq. (4.29):

N
e
Bk

AT e Lo
VB

dw ’
Toor * |1+ (—;’—)M]w = B* (4.173)

R

£

\E |

‘5?: 3§ {3‘;;
?&W&' D6
2314 17

; ¢
o where v’ = k2hG'. Operating upoa Eq. (4.173) with the Q-matrix transformation as in !
A i Egs. (4.54) through (4.57) results in
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Recall the equivalent 6rthcnormalvadapt;ive array system of Fig. 25 and note that Eq.
(4.174) would be tantamount to defining a new input signal vector E' for that system,

whereby
E =,/2—E; (4.175)
V15,

) i.e., the square root of a limiting operation is applied uniformly to all element signals
} before entering the Q-matrix transformation network, and theré is no limiting in the
orthonormal servo loops themselves.

AR e S MANAAT S MRS WA Y

4 s e

Corresponding to Eq. (4.45) we have a new equivalent servo gain factor from Eq.

(4.174),
2 B
H; = f:@- : (4.176) 1
B | s
"Lhis is the important result of the limiter modification, because we are now back to the “>
form of Eq. (4.47) and can use the solutions thereof if u; is replaced by pl;. From Eg. X
(4.176) define a quiescent Servo gain factor uy, as in Eq. (4.60), &
2 ‘Z
9 ﬁo %
Hy = 4177 3
, 0 "’—iol ( ) M%%
where e anticipate that large values will be selected for "'9 (via amplifier gains) for the ;3,%
same reasons as discussed in Sec. 3.4. From the ratio of u ; to %, one can obtain a »}E

more convenient form for Eq. (4.176),

. L
N
SORPR

=
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'5'5 ’ (4.178)
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where P, is the .usual ratio of source power to receiver noise power. Comparing this ex-
pression against the one in Eq. (4.142), we note that the only difference is the square
root of the power ratio summaticn in the dénominator. That summation, however, pro-
duces a number of interesiing. effects, including the following:

-
1
N \3::\,&%;5 o

1. The strong jammer power ratios will dominate the summation and result in lower
values for any u; asSociated with the weak jammers.
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¥ 2. For small eigenvalues, u; will generally be smaller than uj and can approach unity. zg;%
&= This effect results in rather large magnitude levels for the adapted weights and requires a e
X modification of the eigenvector beam concept équations. ey
X . . . e . 2
F 3. For maximum power summations, the transient performance with limiters will be %
53 no better than without the limitess and may be worse. ??
P 7
4 4. It further complicates the maximum servo gain factor condition which relates to 4

P

control-loop noise.
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% Equation (4.146) is now modified to the expression Qg
& Iy 2\ (uB,: %
\ p = —— o EL"_) ==} _4 (3.179) 2
i m B 2 ! 10 -1
% R 0" 3
1+ 2.5
i : r=1 7
¢ i
& A little thought on the severai parameters involved in this expression indicates that o

it will be difficult to make exact comparisons with the transient performance characteris-
tics plotted previously. From Table 2, we see that the largest eigenvalue encountered was
18,544 in Case B, with a total power ratio of 2,450. Using these values, together with a
reasonably high value of 100 for uj, leads to a preliminary selection for p;, of about
40,000. If the channel bandwidth B, is kep{ at 5 Mc as before, 75 must be increased to
25,500 ps. Summarizing these selected constants, then, we have

RV RIS U

s,
Ak

E

w = 40,000

-, )‘ax

= -}

To = 25,600 ps 3

B, = 5 Mec. b s

ki

Before calculating transient response, it is pertinent to examine the steady-state ortho- 4
normal weight equation (Eq. (4.62)), which will now be given by o

A A A NI R S R KRR g SR R ST Y

Xy vy
] -

i1+ ug\ -
i) =(1 ; ”;) Wi - e

Note that since the value of u; can be much smaller than 1.&},, it is evident that the
orthonormal vieights can be much larger then the quiescent weights, andthis can carry
over into the final real weights. Therefore, the usual previous performance index of in-
crease in output noise power cannot be used with the limiter modification. It is neces.
sary to use the-degradation in S/N ratio, defined in Eq. (4.159), instead. Based on this
latter performance index, the following cases from Tablc 2 are compared:
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Case A—The transient performance for this case of ¢ single, narrowband interference
source is greatly improved by the limiter modification, as shown in Fig. 59 for jammer
power ratios of 21 and 31 dB. For such single-source cases, the system will bkehave in
much the same manner as the single adaptive loop discussed in Sec. 3.4, because only one
unique eigenvalue and one power ratio are involved. Note particularly the improvement
at the lower power ratio of 21 dB.
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3 307 SELEMLINAARAY A0 &
H : 1JAM: 1250,21,0,1 2
i < 2 ‘
H : :
} 25 :
: g :
z :
‘ g 21 E
f g i
K3 : :
N . .
17} 5~ =
4 : :
= H —
i z - S~ 3
N E . ~ .
, g T~ - 2-dBJAM
. g 10 'E' Nf ~ -
: g T~~_ :
| : 21-dB JAM ~—— :
i 5= WITH LIMITERS -t .
; P 3-dBuAM : |
;, o wrrHE M ;
; :+ LIMITERS ™ :
| 0l > &.___~__~_- ___________ : :
; o 2 4 6 8 W0 12 W@ 1 @& 20 2 ;
‘ ™ig, 69—Transient response with and without limiter modification for single source,
p Case A, for power ratios of 21 dB and 31 ¢3
; To illustrate. the increase in the adapting weights referred to above, Fig. 60 is a

special plot of the increase in output noise power, in which the time scale becomes loga-
rithmic after ¢ = 7.2 us. After the initial fast transient in which the jammer noise power

is nulled, the weights increase in magnitude slowly (while keeping the jammer nulled out)
until they reach the steady-state level given in Eq. (4.187). For the sevan norunique eigen-
values, u; = 2.83; the ratio in Eq. (4.180) is equal to 26.4. approximately representing

: the steady-scate weight magnitudes; the square of that ratio then accounts for the 28-dB

{ increase in output noise power. The array gain also increases by the same amount, so

3 that the effect does not show up in the S/N plots of Fig. 59.

P SRR S

Case B—The transient performance for this two-source case is shown in Fig. 61. It
is the same with limiters as without (compare with Fig. 36). The reason for the practically
identical behavior is that this case was the basis for the choice of u,,, 7, 4,,, and 7,
and results in almost identical transient decay factors. For example, for the largesi
eigenvalue,

R T N T o Y

1+4, 18,545 _
U =~ = 57 = 1465

o = 12Fm 37458
m o To T 25500

= 1.469.

The only major difrerence is that with the limiter modification, the magnitudes of the !
weights change in a manner similar to that described for Case A.
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Case C—This two-source case is the same as Case B, except that the power ratio of
the second source is reduced by 10 dB. Transient response is shown in Fig. 62 with and
withoit limiters. Note that there is little difference, a reflection of the fact that the
transient decay factors are not much different.

Case D—This four-source case has a transient response with limiters that is so nearly
identical to that shown in Fig. 41 that there is no point in showing it. The transient
decay factors are almost equal for the two conditions.

Case E—The single-source case with various bandwidths shows little difference with
limiters. Figure 63 illustrates the transient responses for a bandwidth of 16%.

Case F—This case of main-beam jamming is little different from that shown in Fig.
47b, but it shows distinctly faster transient response with limiter modification if the
power ratio were lowered by 10 dB or more, in a manner similar to Case A.

Case G—This extensive sidelobe-jamming case with limiters has a transient response
nearly identical to that given in Fig. 50,

Case H—With symmetry in its extensive sidelobe jamming and twice the total power
of Case G, this case shows some difference in the transient response. Note in Fig. 64 that
the response is worse with limiters than without. The considerably poorer performance in
the vicinity of 100 us is partly caused by increased o; values and partly by the effects of
the slowly increasing we’ght magnitudes.

The séeady-state adapted patterns for the above cases are not changed significantly
by the limiter modification, provided that ug > 1. However, the transient patiem be-
havior will usually be different because of different transient decay factors ¢; and a
modification in the eigenvector beam summation. To bring out these differences, let us
rewrite the steady-state orthonormal weights of Eq. (4.180) in the foliowing form:

. L+ .
Wi() = a (‘1 y” Wi (4.181)
where
()
a = |— 4,182
TTH (4.182)
and
Kiy = (4.183)

Under the eigenvalue condition that f8 ,-2 = [302, M}, represents the minimum value of u;
from Eq. (4.178), and it will generally be much smaller than pj,. For example, in Case A
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= 2.83, and this results in a value of a = 26.4 for the constant deﬁned in Eq. (4.182).

3 'I‘fxe constant a represents the increase in the magnitude level of the nonunique ortho- ; s
§ normal weights. C é
s ;
% Substituting this new expression for W;(e0) into Eq. (4.48), we can manipulate it ; ﬁfé
4 into the following relationship for the orthonormal weights: : ‘g
' . ATy P
2 _ -0t i imy . -0t A " ]
Wi=aiW, -(1-e ") a1 ) Wai - ( - %—)e CWuf. .(4.184) P A
. ¢ i 75
P
Compare Eq. (4.184) against Eq. (4.65), and note that the first two terms are the same if i f@s
we assume that u;m plays the same roll as py. dowever, we have an extra transient term : Ko
on the right-hand side in the above expression. ‘ : I;:;S
Proceeding with the same arguments used in developing Eq. (4.119) results in the ?
following output pattem function, from Eq. (4.184): i
.;ég

X ot #I - “l v“

_ - i im N

G(,t) = aiG,(8) - 1Z-:1 1l-e ! )(T;—;T) W,:8:6) - g0,¢t) (4.185)
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where

1 X -0t »
s'(0,2) = ( - Z)Ze CW,80). (4.186)

i=1’

Compare Eq. (4.185) against Eq. (4.119), and note that except for g'(0,t) the expression
is similar if we assume equivalence of u;m and g, and that under steady-state conditions
the results shovld be virtaally identical. This explains why the steady-state adapted pat-

terns are not changed siguificantly by the limiter modification, except for the increase in
level by the constant a.

However, the transient behavior is modified by the extra patlem function g'(6,t),
which has some rather interesting characteristics when. plotted over time. For example,
note that at time ¢t = 0,

g'6,0) = (1 -—)Z 1ii(0) = (1 - -})G,,(@); " (4.187)

i.e., it reduces to the quiescent pattern and results in G(6,0) = G (0), as it should. If we
select t= Tu , at which time all of the unique transxent decays have just finished, then
all the remaining o; will be identical and equal to o, such that
1\ -alt o A
g0,8) =(1 - =)e™0" 3" W,g0) =T, (4.188)
=X

where oy = (1 + p}, )/7g and X;, X,, ..., X,, denote the nonunique members of the set
of eigenvector beams. But such a summation will usually be approximately ecual to the
steady-state adapted pattern; i.e.,

G(0,) ~ Z W,i8(6). (4.189)
=X,

Thus, for time ¢ > T, Eq. (4.185) reduces to the approximation
~ 1), “of >7T 190
GO,t) ~ a{l - (1 - 3)e G(@,°) t=T, (4.190)

where we have the steady-state pattern essentially established by time T, and increasing
slowly in level thereaftgr to its steady-state magnitude of aG(f, ).

For precise pattern calculations during the transient, one should work with complete
Eqgs. (4.185) and (4.186). This requires computing a completely filled Q-transformation
matrix and using all the eigenvector beams that have finite W,_. weighting. For example,
in Case H, eigenvector beam gg(0) is not used in Eq. (4. 119)1)ecause of the (; ~ yy)
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term deletion, but in Eq. (4.186) it is prominent and helps t~ account for the longer
convergence time noted in Fig. 64.

In summary, the hard-limiter modification results in the same dynamic range improve-
ments extolled in Sec. 3.4. It gives superior circuit operation and loop stability, but little
improvement in transient response except for the special case of a single narrowband
interference source. The advantages of dynamic-range improvement are enough to recom-
mend incorporation of the hard limiter (or fast AGC).

5. CONCLUSION

An adaptive array consisting of a ‘-element linear array with K adaptive control
foops of the Applebaum analog type derives feedback control error signals from the corre-
lations between element signals, on the basis of the covariance matrix of the set of sys-
tem inputs. The covariance matrix is a summation or repository of all interference dis-
tribution information as seen by the array in its operating environment.

—mam

The set of linear differential equations associated with the control-loop network can
be solved by a Q-matrix transformation into orthonormal eigenvector space, with the Q
matrix consisting of :he eigenvectors of the covariance matrix. In this report, the purely
mathematical Q-matrix transformation has been interpreted in terms of orthogonal beam-
forming networks, similar in principle to a Butler matrix beam-forming network. This is
the basis for an equivaient “orthonormal” adaptive control-loop network which is much
easier to understand than the real network itself.

W B ot % Aumage  a

S

~ e

!
f
¥
}

The Q-mattix beam-forming network produces a set of K orthogonal, normalized
eigenvector beams, in which the array element weights associated with each eigenvector
beam consists of the components of the eigenvector. The output powers from these beams
are proportional to the associated eigenvalues and are decorrelated. The eigenvector beams
have been used in a convenient expression for the output pattern function for the array.
As developed in Eq. (4.119), the expression is

v e PENC AT N N

e

e

.-

;" 60,60 = 6,0 ~ 3 (1 - ) (BEY) iy o
(6,6) = ,,()~i=Z;(1—e Wars 1) Waiti(®):

e N

This requires only the quiescent pattermn G, (8) plus the unique eigenvalues and associated
unique eigenvectors. The term (u; - tg) eliminates all of the eigenvector beams whose
output power consists of receiver noise only. The expression uses the concept of array
degrees of freedom, since one degree of freedom must be consumed for each unique
eigenvalue generated by the covariance matrix.

Performance characteristics were calculated from the above expression for eight dif-
ferent distributions of interference sources, as listed in Table 2, These distributions were
selected to demonstrate the effects of source power level, source location with respect
to the quiescent beam pattern, source spacing in terms of array resolution, source band-
width, and continuous source distributions. Some of the major effects noted were

¢
P T L 3 e AN PO M P > - B R e A A ] e S e ¥ S Y P e S N T A
; ER TN
RO Y ey CTPOI TS U y .
SH Y e RGNS (2 IR s
e VRS .o ‘\’%}J "35{*’: R EX ol 3 ’MA’T R,y Fy L LI
B TGO . S, S g, &% % wt o T k)“x Shix T ont g
; J & 3 i 5 T Y N
Bl iy M%-.&Mkﬁmfm Wik Wi e st



g TR

44

Y R

Ty
PR

g

TR

N
s
N
%
“
1
bl
3%
<

e

DA

e

o i
B L 1 € et M ettt & s iat A

R BRSO

NRL REPORT 7739

1. Sidelcbe jamming distorts the output pattern in proportion to the number of
unique eigenvalues, i.e., the array degrees of freedom consumed.

2. Main-lobe jamming produces severe pattern distortion.

3. Slow convergence rates are associated with small eigenvalues, and small eigen-
values are generated by closely spaced sources, continuous source distributions, sources
with bandwidth, low-power sources, and combinations of these.

4. Separated narrowband sources usually consume one array degree of freedom per
source, but sources with bandwidth may consume two or three array degrees of freedom
per source, depending on the source locations and their percentage bandwidths.

5. Narrowband sources are usually attenuated by developing a pattern null close to
their locations. These nulls typically do not aline exactly with source position unless the
source is very strong, with a power level of 30 dB or more above receiver noise power.

6. If there are many sources closely spaced so as to form a continuous distribution,
the system attenuates them by developing a “low sidelobe notch” regior: in the adapted
pattern; i.e., the array handles them on a resolution basis. This permits the array to use
its degrees of freedom so efficiently that it can handle a large number of sources, far in
excess of its number of available degrees of freedom.

In computing the eight source-distribution cases, the unique, retrodirective eigen-
vector beams were plotted. It was found that they could be characterized by a family of
harinonically related pattern ‘“modes.” Case G, in particular, produced o' classic, har-
monically related set, up through the sixth harmonic. Even though these beams are not
in real space, they give one an excellent perspective for the synthesis of adaptive pattern
reactions to given interference distributions. They should be useful in developing beam-
transformation algorithms and techniques for future adaptive systems.

Applebaum introdnced a hard-limiter modification into his basic control loop to im-
prove the circuit characteristics, particularly the system dynamic range. This modifica-
tion was included in the analysis and resalted in a major change in the equivalent servo
gain factors, plus the addition of an extra transient term in the above-mentioned output
pattern function for the array.

One effect of the modification is that the magnitude levels of the adapted weights
change considerably but slowly, so that there is no significant difference in the steady-
state adapted pattern except for the increase in l2vel. Also, the transient behavior is
modified somevshat, but not by any large factor except in the very special case of a
single narrowband jammer of low power level, for which a much faster response is
obtained.

The present state-of-the-art in adaptive arrays is still in its infancy, and many prob-
lems remain to be addressed, in theory and in practice. However, progress is repid and
the future for these systems looks very promising. For example, accelerated ccnvergence
techniques are being developed to overcome sluggish response situations, and main-beam
constraint techniques are being developed to overcome the objéctionable main-beam dis-
tortions suffered by most of the current adaptive techniques.
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;3 TRANSIENT RESPONSE OF A SIMPLE RLC CIRCUIT F.
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x From the circuit shown in Fig. Al, th2 integro-differential equation may be written ,:i K
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B Taking the Laplace transform of both sides and assuming that initial charges and currents

i: are zero, we got ,
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where 3 = ¢ + jw is the usual Laplace complex variable. Then
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o= 1. L = attenuation constant.
T 2RC ?

(A8)

Y(S) is the Laplace transform expression for the circuit itself, independent of any excita-

If we now take an input step function of a sinusoid for v, so that v =0 for t < 0

and

v= (-'-J%C-') sin (wot +dg-u) for t = 0,

then its Laplace transform will be found to be

sin (¢o — u) [S v En"ﬁf"—‘u‘i]

wS) = ~"—”§-G- - - :
§2 + wg J
From Eq. (A3) we may write R
. )
n(go—~u) S + ——o——
abG 208 oin (b0 = 1) [ ta“(¢°'“)]
WSy = =5 T )
S+a) + B 82 + wyg

This may be rewritten in the following series form, based upon the roots of S:

.

e dA [__ei? ei¥ B_ (el e7i?
W(S) = abG 3 [(S+Ot) ~ jB + S+a) + jﬁ] +_27(S ~Jwo S+ fwo)

Solving for the constants 0, B, ¥, and A, w» have

ﬁ02 _ ‘*’02
= - “1{——
0= ¢p — u + tan 2acag
B = 1 .
‘302 _ wOZ)"'
Z2 y1+ ( 2009 .

T B(Bs - wg

B tan (g9 — u)

=5 + tan"l | —————=% 4+ tan'l[
2 (82 +w02)J wg ~ atan ($g ~ U

]
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Finally, we get our output in the time domam by takmg the invetse Laplace transform of
Ey. (A12), so that .

wE) ‘ (A17)

=
it

SR L
rvs

.
3
i

= abGle~A cos (Bt + ) + Bsin (wgt +6)] . (A18)
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Appendix B

CONSTRUCTION OF NONUNIQUE EIGENVECTCORS FOR
FILLING OUT THE Q@ MATRIX

The method for filling out the @ matrix is based on using controlled null placement
to optimize spatial coverage, in a manner similar to the operation of the Davies tree net-
work discussed in Sec. 4.3. The vectors so derived are then orthogonalized by the Gram-
Schmidt procedure and normalized to produce the desired eigenvectors.

Using Case B of Table B1, wshich involves two sources located at 18 and 22 degrees
respective.y, we establish these tw. o source locations on the Z-plane unit circle as shown
in Fig. Bla, using Eq. (4.80): Z = exp (j2u). These shall be regarded as constrained null
locations for the nonunique beams. It is necessary to have as mary constrained nul:s as
there are unique eigenvalues; we shall denote this number by the symbol K,,. With K,
null positions fixed, there remain (K — K,,) null positions to be located on the circle and,
although the choice of these positions is theoretically arbitrary, it seems desirable from a
beam-forming point of view to seek lecations which optimize the spctial coverzge by
maximizing the separations between the remaining null locatioas. If this principle is ap-
plied in Fig, Blb, the remaining null locatinns should be spaced apart equally by the angle

360 - ¢ \ _
(K—:——_ K, + 1) = 49.7°

where ¢ is the angular separation of the two closely spaced constrained nulls on the circle.

(a) Constrained-null (or source
position) locativns

Fig. B1—Null locations on Z-plane unit
circle for Case B
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(b) Locations chosen for six remaining nulls

Fig. BL—Null locations on Z-plane unit
circle for Case B (Continuad)

When all of the null locations L3 through Lg have been selected, the next step is to
form the nonunique beams by choosing (K - 1) of the K null positions for use in Eq.
(3.83): F(Z)=ag-1(Z~Z1)(Z- Z3)(Z~ Z3) ... (Z - Zg-1). The constrained null posi-
tions Ly and L3 must be used in each beam. If the ith beam is denoted by G;(Z), then

e R LIRS 1S WO T

Gi(2) = (Z-2:)(Z- 22042 - Z3) ... (Z- Zg-y). (B1)

The null selections for the six beams assnciated with Fig. B1 are shown in Table B2.
Computer programs are available for using the null positions of Eq. (B1) to solve for the
complex coefficients associated vith the standard polynomial form of G;(Z ),

S

Gi(Z) = Ag + A1Z + ApZ% + AgZ8 + ... + Ay ZK-1, (B2) )
i b
(s §
B These complex coefficiunts constitute the components of the element weighting vectors 3
S associated with the beams: 1
i
Y K-1 |
Gi(0) = (W'S) = D ArSpu, (B3) :

k=0 {

where 3

W = [Ao, A1, 42,43, ..., Ag-,] (B4) §

and § is defined in Eq. (4.8): St = [81,S5,S3, ..., Sk1. Ia seneral, the W; vectors
calculated by the above procedure are not orthogonal to one another, and it is necessary
to orthogonalize by the Gram-Schmidt procedure*,

*F.B. Hildebrand, Methods of Applied Mathematics, 2d. ed., Prentice-Hall, Inc., Englewood Cliffs, M.J.,
1965,
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Table Bl

Selected Distributions of Interference Sources

Interference Sources Unique Eigenvalues
Case | Number Power I;ocatiéxx Band- Spectrum
of Ratios Angle width ple;:nes ' | Number Values
Sourc.s (Deg) (%) ’

A 1,250 21 0 1 1 10,001
B 2 1,250 18 0 1 2 18,544
1,200 22 0 ] 1,068
C 2 1,250 18 0 1 2 10,812
126 22 0 1 190
L 4 49 18 0 1 4 11,616
125 25 0 1 2,486
400 33 0 1 406

1,250 42 0 1 16.5
El 1 1,250 42 0 1 1 10,001
E2 1 1,250 42 ¢ 3 2 9,986

16.4
E3 1 1,250 42 15 16 3 9,629
469

4.1
F 1,250 5 0 1 1 10,001
G 1,100 36 26 11 6 13,316
1,100 48 21 11 9,692
1,100 66 19 11 3,001
296

10.5

1.16

H 6 1,100 -66 19 11 8 13,5632
1,100 -48 24 11 13,386
1.100 -3i 26 11 12,619
1,100 36 25 11 9,682
1,100 48 21 11 3,224
1,100 66 19 11 350

14.7

1.18
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Table B2
Beam Null Locations
Null Nonunique Beams
Positi -
ositions G1(0) G2(0) G3(0) G4(0) Gs(6) Ge(0)
Zy Lo Ly Ly Ly I Ly
Z3 Ly L3 Ly Lg L3 L3
Zy Lg g Ly Ly Ly Ly
Zs Ls Ls L Ls Ls Lg
Zg Lq Lq Lq Lq Lg Le
Z Lg Lg Lg Lg Lg L

In our example, we start with the two unigue eigenvectors e; and eg, the compo-
nents of which are printed out in Table B3, These two are already orthogonal and normal-
ized, of course, We next take the first vector Wj, corresponding to the nonunique beam
G1(0), and form the new vectnr,

Vs = Wi - qie; — gges. (B5)
The requirement that Vg be orthogonal to e; leads to the relation

(ey'Vg) = (e'Wy) - g1 = 0

or

(e1*wWy) 5 (BS6)

n

q1
similarly,

a2 = (eg'Wy). (87)

Thus, we “subtract off”” the e; and ep components of W;, obtaining the vector V;, which
is now orthogonal to both e; and ep. Vj is then normalized by dividing by its Hermitian
length to get the eigenvector e3:

V3

L — (BS)
e \’(V:'Vb,)

Eigenvector e3 is therefore our first nonunique eigenvector.

To get the second nonunique eigenvector ¢4, we take the second vector Wo irom our
set and form the new vector V4, orthogonal to each eigenvector, so that
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Table B3
Eigenvalues and Eigenvectors for a Two-Source Case*t

g

g £

1
Eigenvector
Coefficient

Phase Angle
(Deg)

11 0.340120 69.7477
1,2 0.351501 8.3626
1,3 0.359156 -53.03
14 0.363004 245.573
1,5 0.363004 184.175
1,6 0.359156 122,778
1,7 0.3515601 61.3852
1,8 0.3.10120 0

2,1 0.6371567 250.308
2,2 0.387808 188.701
2,3 0.234347 126.989
2,4 0.078413 64.5464
2,5 0.078413 185.762
2,6 0.234347 123.319
2,7 0.387808 61.607
2,8 0.537157 0

Amplitude

*Jammer powey ratios 1,250; location angles 18° and 22°; band-
width 0%; one spectrum line,
1'Unique eigenvalues: 18,544.4 and 1,057.58

Vs = Wy - 1165 — qgeg — qge3, (B9)

where the g; constants are ‘o be evaluated as before. Dividing V4 by its Herm'tian length
then results in e4.

P AL

The above process is simply repeated for each of the W: in turn, until all of the non-
unique eigenvectors have heen computed, whereupon they can be entered info the Q
marrix to fill it out,
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